The design of multifunctional materials offers great potential for numerous applications in areas ranging from biomaterial science to structural engineering. Functionally graded microstructures (e.g., polymeric foams) are those whose porosity (i.e., ratio of the void to the solid volume of a material) is engineered to meet specific requirements such as a superior mechanical, thermal, and acoustic behavior. The controlled distribution of pores within the matrix, as well as their size, wall thickness, and interconnectivity are directly linked to the porous materials properties. There are emerging design and analysis methods of cellular materials but their physical use is restricted by current manufacturing technologies. Although a huge variety of foams can be manufactured with homogeneous porosity, for heterogeneous foams there are no generic processes for controlling the distribution of porosity throughout the resulting matrix. This paper describes work to develop an innovative and flexible process for manufacturing engineered cellular structures. Ultrasound was applied during specific foaming stages of a polymeric (polyurethane) melt, and this affected both the cellular architecture and distribution of the pore size, resulting in a controlled distribution that can be designed for specific purposes, once the polymeric foam solidified. The experimental results demonstrate that porosity (i.e., volume fraction) varies in direct proportion to the acoustic pressure magnitude of the ultrasonic signal.

1.
Seepersad
,
C. C.
,
Allen
,
J. K.
,
McDowell
,
D. L.
, and
Mistree
,
F.
, 2006, “
Robust Design of Cellular Materials With Topological and Dimensional Imperfections
,”
ASME J. Mech. Des.
0161-8458,
128
(
6
), pp.
1285
1297
.
2.
Mano
,
J. F.
, and
Reis
,
R. L.
, 2005, “
Some Trends on How One Can Learn From and Mimic Nature in Order to Design Better Biomaterials
,”
Mater. Sci. Eng., C
0928-4931,
25
(
2
), pp.
93
95
.
3.
Boccaccini
,
A. R.
, 1999, “
Fabrication, Microstructural Characterisation and Mechanical Properties of Glass Compacts Containing Controlled Porosity of Spheroidal Shape
,”
J. Porous Mater.
1380-2224,
6
(
4
), pp.
369
379
.
4.
Seepersad
,
C. C.
,
Allen
,
J. K.
,
McDowell
,
D. L.
, and
Mistree
,
F.
, 2008, “
Multifunctional Topology Design of Cellular Material Structures
,”
J. Mech. Des.
1050-0472,
130
(
3
), p.
031404
.
5.
Peng
,
H. X.
,
Fan
,
Z.
,
Evans
,
J. R. G.
, and
Busfield
,
J. J. C.
, 2000, “
Microstructure of Ceramic Foams
,”
J. Eur. Ceram. Soc.
0955-2219,
20
(
7
), pp.
807
813
.
6.
van Tienen
,
T. G.
,
Heijkants
,
R. G.
,
Buma
,
P.
,
de Groot
,
J. H.
,
Pennings
,
A. J.
, and
Veth
,
R. P.
, 2002, “
Tissue Ingrowth and Degradation of Two Biodegradable Porous Polymers With Different Porosities and Pore Sizes
,”
Biomaterials
0142-9612,
23
(
8
), pp.
1731
1738
.
7.
Nagel
,
R. L.
,
Midha
,
P. A.
,
Tinsley
,
A.
,
Stone
,
R. B.
,
McAdams
,
D. A.
, and
Shu
,
L. H.
, 2008, “
Exploring the Use of Functional Models in Biomimetic Conceptual Design
,”
J. Mech. Des.
1050-0472,
130
(
12
), p.
121102
.
8.
Chen
,
P. Y.
,
Lin
,
A. Y. M.
,
Lin
,
Y. S.
,
Seki
,
Y.
,
Stokes
,
A. G.
,
Peyras
,
J.
,
Olevsky
,
E. A.
,
Meyers
,
M. A.
, and
McKittrick
,
J.
, 2008, “
Structure and Mechanical Properties of Selected Biological Materials
,”
J. Mech. Behav. Biomed. Mater.
1751-6161,
1
(
3
), pp.
208
226
.
9.
Sadagopan
,
D.
, and
Pitchumani
,
R.
, 1997, “
A Combinatorial Optimization Approach to Composite Materials Tailoring
,”
ASME J. Mech. Des.
0161-8458,
119
(
4
), pp.
494
503
.
10.
Taboas
,
J. M.
,
Maddox
,
R. D.
,
Krebsbach
,
P. H.
, and
Hollister
,
S. J.
, 2003, “
Indirect Solid Free Form Fabrication of Local and Global Porous, Biomimetic and Composite 3D Polymer-Ceramic Scaffolds
,”
Biomaterials
0142-9612,
24
(
1
), pp.
181
194
.
11.
Yan
,
Y.
,
Xiong
,
Z.
,
Hu
,
Y.
,
Wang
,
S.
,
Zhang
,
R.
, and
Zhang
,
C.
, 2003, “
Layered Manufacturing of Tissue Engineering Scaffolds via Multi-Nozzle Deposition
,”
Mater. Lett.
0167-577X,
57
(
18
), pp.
2623
2628
.
12.
Jackson
,
T. R.
,
Liu
,
H.
,
Patrikalakis
,
N. M.
,
Sachs
,
E. M.
, and
Cima
,
M. J.
, 1999, “
Modeling and Designing Functionally Graded Material Components for Fabrication With Local Composition Control
,”
Mater. Des.
0264-1275,
20
(
2–3
), pp.
63
75
.
13.
Hu
,
Y.
,
Blouin
,
V. Y.
, and
Fadel
,
G. M.
, 2008, “
Design for Manufacturing of 3D Heterogeneous Objects With Processing Time Consideration
,”
J. Mech. Des.
1050-0472,
130
(
3
), p.
031701
.
14.
Dutta
,
D.
,
Prinz
,
F. B.
,
Rosen
,
D.
, and
Weiss
,
L. E.
, 2001, “
Layered Manufacturing: Current Status and Future Trends
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
1
(
1
), pp.
60
71
.
15.
Wang
,
H. V.
, 2005. “
A Unit Cell Approach for Lightweight Structure and Compliant Mechanism
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
16.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1997,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
17.
Zhang
,
Y.
,
Zhu
,
P.
,
Chen
,
G. L.
, and
Lin
,
Z. Q.
, 2007, “
Study on Structural Lightweight Design of Automotive Front Side Rail Based on Response Surface Method
,”
J. Mech. Des.
1050-0472,
129
(
5
), pp.
553
557
.
18.
Torres-Sánchez
,
C.
, and
Corney
,
J.
, 2008, “
Effects of Ultrasound on Polymeric Foam Porosity
,”
Ultrason. Sonochem.
1350-4177,
15
, pp.
408
415
.
19.
Zhang
,
X. D.
,
Macosko
,
C. W.
,
Davis
,
H. T.
,
Nikolov
,
A. D.
, and
Wasan
,
D. T.
, 1999, “
Role of Silicone Surfactant in Flexible Polyurethane Foam
,”
J. Colloid Interface Sci.
0021-9797,
215
(
2
), pp.
270
279
.
20.
Rojas
,
A. J.
,
Marciano
,
J. H.
, and
Williams
,
R. J.
, 1982, “
Rigid Polyurethane Foams: A Model of the Foaming Process
,”
Polym. Eng. Sci.
0032-3888,
22
(
13
), pp.
840
844
.
21.
Font
,
R.
,
Sabater
,
M. C.
, and
Martínez
,
M. A.
, 2002, “
The Leaching Kinetics of Acetone in an Acetone-Polyurethane Adhesive Waste
,”
J. Appl. Polym. Sci.
0021-8995,
85
(
9
), pp.
1945
1955
.
22.
Gallego-Juarez
,
J. A.
,
Rodriguez-Corral
,
G.
,
Riera-Franco de Sarabia
,
E.
,
Campos-Pozuelo
,
C.
,
Vazquez-Martinez
,
F.
, and
Acosta-Aparicio
,
V. M.
, 2000, “
Macrosonic System for Industrial Processing
,”
Ultrasonics
0041-624X,
38
(
1–8
), pp.
331
336
.
23.
Gallego-Juarez
,
J. A.
,
Rodriguez-Corral
,
G.
,
Riera-Franco de Sarabia
,
E.
,
Vazquez-Martinez
,
F.
,
Acosta-Aparicio
,
V. M.
, and
Campos-Pozuelo
,
C.
, 2001, “
Development of Industrial Models of High-Power Stepped-Plate Sonic and Ultrasonic Transducers for Use in Fluids
.”
Proc.-IEEE Ultrason. Symp.
1051-0117,
1-2
, pp.
571
578
.
24.
Price
,
G. J.
,
Lenz
,
E. J.
, and
Ansell
,
C. W. G.
, 2002, “
The Effect of High Intensity Ultrasound on the Synthesis of Some Polyurethanes
,”
Eur. Polym. J.
0014-3057,
38
(
8
), pp.
1531
1536
.
25.
Mason
,
T. J.
,
Collings
,
A.
, and
Sumel
,
A.
, 2004, “
Sonic and Ultrasonic Removal of Chemical Contaminants From Soil in the Laboratory and on a Large Scale
,”
Ultrason. Sonochem.
1350-4177,
11
(
3–4
), pp.
205
210
.
26.
Mulet
,
A.
,
Carcel
,
J. A.
,
Sanjuan
,
N.
, and
Bon
,
J.
, 2003, “
New Food Drying Technologies—Use of Ultrasound
,”
Food Sci. Technol. Int.
,
9
(
3
), pp.
215
221
. 1082-0132
27.
Pitt
,
W. G.
,
Husseini
,
G.
, and
Staples
,
B. J.
, 2004, “
Ultrasonic Drug Delivery—A General Review
,”
Expert Opin. Drug Deliv.
,
1
(
1
), pp.
37
56
. 1742-5247
28.
Floros
,
J. D.
, and
Liang
,
H.
, 1994, “
Acoustically Assisted Diffusion Through Membranes and Biomaterials
,”
Food Technol.
,
48
(
12
), pp.
79
84
. 0015-6639
29.
Malcolm
,
A. A.
,
Leong
,
H. Y.
,
Spowage
,
A. C.
, and
Shacklock
,
A. P.
, 2007, “
Image Segmentation and Analysis for Porosity Measurement
,”
J. Mater. Process. Technol.
0924-0136,
192-193
, pp.
391
396
.
30.
Montminy
,
M. D.
,
Tannenbaum
,
A. R.
, and
Macosko
,
C. W.
, 2004, “
The 3D Structure of Real Polymer Foams
,”
J. Colloid Interface Sci.
0021-9797,
280
(
1
), pp.
202
211
.
31.
Torres-Sánchez
,
C.
, 2008. “
Generation of Heterogeneous Cellular Structures by Sonication
,” Ph.D. thesis, Heriot-Watt University, Edinburgh, UK.
32.
Balasubramaniam
,
K.
, and
Sethuraman
,
S.
, 2006, “
Ultrasonic Interferometric Sensor for Rheological Changes of Fluids
,”
Rev. Sci. Instrum.
0034-6748,
77
(
8
), p.
084902
.
33.
Albers
,
V. M.
, 1965,
Underwater Acoustics. Handbook II
,
Pennsylvania State University Press
,
University Park
.
34.
Cheeke
,
J. D. N.
, 2002,
Fundamentals and Applications of Ultrasonic Waves
,
CRC
,
Boca Raton, FL
.
35.
Raum
,
K.
,
Cleveland
,
R. O.
,
Peyrin
,
F.
, and
Laugier
,
P.
, 2006, “
Derivation of Elastic Stiffness From Site-Matched Mineral Density and Acoustic Impedance Maps
,”
Phys. Med. Biol.
0031-9155,
51
(
3
), pp.
747
758
.
36.
Yoshizawa
,
M.
,
Ushioda
,
H.
, and
Moriya
,
T.
, 2004, “
Development of a Bone-Mimicking Phantom and Measurement of Its Acoustic Impedance by the Interference Method
,”
Proc.-IEEE Ultrason. Symp.
1051-0117,
1-3
, pp.
1769
1772
.
37.
Crum
,
L. A.
, 1980, “
Measurements of the Growth of Air Bubbles by Rectified Diffusion
,”
J. Acoust. Soc. Am.
0001-4966,
68
(
1
), pp.
203
211
.
38.
Leighton
,
T. G.
, 1995, “
Bubble Population Phenomena in Acoustic Cavitation
,”
Ultrason. Sonochem.
1350-4177,
2
(
2
), pp.
S123
S136
.
You do not currently have access to this content.