This paper describes the development of a piezohydraulic actuator for broadband microjet flow control applications. The actuator utilizes a lead zirconate titanate (PZT) stack actuator and a hydraulic amplification design to achieve relatively large displacements in a compact actuator to control flow through a microjet orifice. Displacement amplification of 81 times the stack actuator displacement was achieved using a new dual-diaphragm design. The nonlinear and hysteretic field-coupled material behavior, structural dynamics, and fluid dynamics of the actuator are modeled using a system dynamic model and compared with experimental results. The nonlinear and hysteretic piezohydraulic actuator characteristics are shown to be strongly dependent on the nonlinear deformation of the rubber diaphragm and minor loop hysteresis of the PZT stack actuator. The modeling technique provides a design tool for broadband performance predictions and system optimization to facilitate implementation of the actuator in a flow environment.

1.
Lord
,
W.
,
MacMartin
,
D.
, and
Tillman
,
T.
, 2000, “
Flow Control Opportunities in Gas Turbine Engines
,” AIAA Paper No. 2000-2234.
2.
Cattafesta
,
L.
,
Garg
,
S.
,
Chourdhari
,
M.
, and
Li
,
F.
, 1997, “
Active Control of Flow-Induced Cavity Resonance
,” AIAA Paper No. 1997-1804.
3.
Rowley
,
C.
, and
Williams
,
D.
, 2006, “
Dynamics and Control of High-Reynolds-Number Flow Over Open Cavities
,”
Annu. Rev. Fluid Mech.
0066-4189,
38
, pp.
251
276
.
4.
Glezer
,
A.
, and
Amitay
,
M.
, 2002, “
Synthetic Jets
,”
Annu. Rev. Fluid Mech.
0066-4189,
34
, pp.
503
529
.
5.
Raman
,
G.
,
Khanafseh
,
S.
,
Cain
,
A.
, and
Kerschen
,
E.
, 2004, “
Development of High Bandwidth Powered Resonance Tube Actuators With Feedback Control
,”
J. Sound Vib.
0022-460X,
269
, pp.
1031
1062
.
6.
Cybyk
,
B.
,
Simon
,
D.
,
Land
,
H.
,
Chen
,
J.
, and
Katz
,
J.
, 2006, “
Experimental Characterization of a Supersonic Flow Control Actuator
,” AIAA Paper No. 2006-0478.
7.
Zhuang
,
N.
,
Alvi
,
F.
,
Alkislar
,
M.
,
Shih
,
C.
,
Sahoo
,
D.
, and
Annaswamy
,
A.
, 2003, “
Aeroacoustic Properties of Supersonic Cavity Flows and Their Control
,” AIAA Paper No. 2003-3101.
8.
Lou
,
H.
,
Alvi
,
F.
,
Shih
,
C.
,
Choi
,
J.
, and
Annaswamy
,
A.
, 2002, “
Active Control of Supersonic Impinging Jets: Flowfield Properties and Closed-Loop Strategies
,”
Proceedings of the First AIAA Flow Control Conference and Exhibit
, St. Louis, MI.
9.
Sirohi
,
J.
, and
Chopra
,
I.
, 2003, “
Design and Development of a High Pumping Frequency Piezoelectric-Hydraulic Hybrid Actuator
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
14
, pp.
135
147
.
10.
Yoon
,
K.
,
Shin
,
S.
,
Park
,
H.
, and
Goo
,
N.
, 2002, “
Design and Manufacture of a Lightweight Piezo-Composite Curved Actuator
,”
Smart Mater. Struct.
0964-1726,
11
, pp.
163
168
.
11.
Mauck
,
L.
, and
Lynch
,
C.
, 2000, “
Piezoelectric Hydraulic Pump Development
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
11
, pp.
758
764
.
12.
Uchino
,
K.
, 1998, “
Piezoelectric Ultrasonic Motors: Overview
,”
Smart Mater. Struct.
0964-1726,
7
, pp.
273
285
.
13.
Salapaka
,
S.
,
Sebastian
,
A.
,
Cleveland
,
J.
, and
Salapaka
,
M.
, 2002, “
High Bandwidth Nano-Positioner: A Robust Control Approach
,”
Rev. Sci. Instrum.
0034-6748,
73
(
9
), pp.
3232
3241
.
14.
Nasser
,
K.
,
Leo
,
D.
, and
Cudney
,
H.
, 2000, “
Compact Piezohydraulic Actuation Systems
,”
Proc. SPIE
0277-786X,
3991
, pp.
312
322
.
15.
Oates
,
W.
, and
Lynch
,
C.
, 2001, “
Piezoelectric Hydraulic Pump System Dynamic Model
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
12
(
11
), pp.
737
744
.
16.
Konishi
,
K.
,
Ukida
,
H.
, and
Sawada
,
K.
, 1998, “
Hydraulic Pumps Driven by Multilayered Piezoelectric Elements
,”
Proceedings of the 13th Korea Automatic Control Conference
, pp.
475
479
.
17.
Herdic
,
S.
, 2005, “
Development of Piezo-Hydraulic Actuation Systems Technology for Use on a Helicopter Trailing Edge Flap
,” MS thesis, School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA., pp.
1
77
.
18.
Ullmann
,
A.
, and
Fono
,
I.
, 2002, “
The Piezoelectric Valve-Less Pump-Improved Dynamic Model
,”
J. Microelectromech. Syst.
1057-7157,
11
(
6
), pp.
655
664
.
19.
Smith
,
R.
, 2005,
Smart Material Systems: Model Development
,
SIAM
,
Philadelphia, PA
.
20.
Holzapfel
,
G.
, 2000,
Nonlinear Solid Mechanics
,
Wiley
,
New York
, pp.
239
242
.
21.
Ogata
,
K.
, 1997,
System Dynamics
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
22.
Bay
,
J.
, 1999,
Fundamentals of Linear State Space Systems
,
McGraw-Hill
,
New York
.
23.
Smith
,
R.
,
Seelecke
,
S.
,
Dapino
,
M.
, and
Ounaies
,
A.
, 2006, “
A Unified Framework for Modeling Hysteresis in Ferroic Materials
,”
J. Mech. Phys. Solids
0022-5096,
54
(
1
), pp.
46
85
.
24.
Colebrook
,
C.
, 1939, “
Turbulent Flow in Pipes With Particular Reference to the Transition Between the Smooth and Rough Pipe Laws
,”
J. Inst. Civil Eng.
,
11
, pp.
133
156
.
25.
Oates
,
W.
,
Evans
,
P.
,
Smith
,
R.
, and
Dapino
,
M.
, 2009, “
Experimental Implementation of a Hybrid Nonlinear Control Design for Magnetostrictive Actuators
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
131
(
4
), p.
041004
.
26.
Oates
,
W.
, and
Smith
,
R.
, 2009, “
Optimal Tracking Using Magnetostrictive Actuators Operating in the Nonlinear and Hysteretic Regime
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
131
(
3
), p.
031001
.
27.
Chaudhuri
,
A.
, and
Wereley
,
N.
, 2008, “
Design and Testing of a PMN-PT Based Compact Hybrid Actuator
,”
Proceedings of the ASME Conference on Smart Materials, Adaptive Structures, and Intelligent Systems
, Ellicott City, MD, Oct. 28–30, Paper No. SMASIS08-495.
28.
McLaughlin
,
E.
,
Liu
,
T.
, and
Lynch
,
C.
, 2005, “
Relaxor Ferroelectric PMN-32%PT Crystals Under Stress, Electric Field and Temperature Loading: II-33-Mode Measurements
,”
Acta Mater.
1359-6454,
53
(
14
), pp.
4001
4008
.
You do not currently have access to this content.