Although researchers desire to evaluate system reliability accurately and efficiently over the years, little progress has been made on system reliability analysis. Up to now, bound methods for system reliability prediction have been dominant. However, two primary challenges are as follows: (1) Most numerical methods cannot effectively evaluate the probabilities of the second (or higher)–order joint failure events with high efficiency and accuracy, which are needed for system reliability evaluation and (2) there is no unique system reliability approximation formula, which can be evaluated efficiently with commonly used reliability methods. Thus, this paper proposes the complementary intersection (CI) event, which enables us to develop the complementary intersection method (CIM) for system reliability analysis. The CIM expresses the system reliability in terms of the probabilities of the CI events and allows the use of commonly used reliability methods for evaluating the probabilities of the second–order (or higher) joint failure events efficiently. To facilitate system reliability analysis for large-scale systems, the CI-matrix can be built to store the probabilities of the first- and second-order CI events. In this paper, three different numerical solvers for reliability analysis will be used to construct the CI-matrix numerically: first-order reliability method, second-order reliability method, and eigenvector dimension reduction (EDR) method. Three examples will be employed to demonstrate that the CIM with the EDR method outperforms other methods for system reliability analysis in terms of efficiency and accuracy.

1.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
0161-8458,
126
(
2
), pp.
225
233
.
2.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Du
,
L.
, 2005, “
Enriched Performance Measure Approach (PMA+) for Reliability-Based Design Optimization
,”
AIAA J.
0001-1452,
43
(
4
), pp.
874
884
.
3.
McDonald
,
M.
, and
Mahadevan
,
S.
, 2008, “
Reliability-Based Optimization With Discrete and Continuous Decision and Random Variables
,”
ASME J. Mech. Des.
0161-8458,
130
(
6
), p.
061401
.
4.
Kim
,
C.
, and
Choi
,
K. K.
, 2008, “
Reliability-Based Design Optimization Using Response Surface Method With Prediction Interval Estimation
,”
ASME J. Mech. Des.
0161-8458,
130
(
12
), p.
121401
.
5.
Zou
,
T.
,
Mourelatos
,
Z. P.
, and
Mahadevan
,
S.
, 2008, “
An Indicator Response Surface Method for Simulation-Based Reliability Analysis
,”
ASME J. Mech. Des.
0161-8458,
130
(
7
), p.
071401
.
6.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Du
,
L.
, 2005, “
Adaptive Probability Analysis Using An Enhanced Hybrid Mean Value (HMV+) Method
,”
Struct. Multidiscip. Optim.
1615-147X,
29
(
2
), pp.
134
148
.
7.
Du
,
X.
,
Sudjianto
,
A.
, and
Chen
,
W.
, 2004, “
An Integrated Framework for Optimization Under Uncertainty Using Inverse Reliability Strategy
,”
ASME J. Mech. Des.
0161-8458,
126
(
4
), pp.
562
764
.
8.
Rahman
,
S.
, and
Xu
,
H.
, 2004, “
A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics
,”
Probab. Eng. Mech.
0266-8920,
19
, pp.
393
408
.
9.
Youn
,
B. D.
,
Xi
,
Z.
, and
Wang
,
P. F.
, 2008, “
Eigenvector Dimension-Reduction (EDR) Method for Derivative-Free Uncertainty Quantification
,”
Struct. Multidiscip. Optim.
1615-147X,
37
(
1
), pp.
13
28
.
10.
Ang
,
A. H.-S.
, and
Amin
,
M.
, 1967, “
Studies of Probabilistic Safety Analysis of Structures and Structural Systems
,” University of Illinois, Urbana.
11.
Bennett
,
R. M.
, and
Ang
,
A. H.-S.
, “
Investigation of Methods for Structural System Reliability
,” Ph.D. thesis, University of Illinois, Urbana.
12.
Haldar
,
A.
, and
Mahadevan
,
S.
, 2000,
Probability, Reliability, and Statistical Methods in Engineering Design
,
Wiley
,
New York
, pp.
238
248
.
13.
Ditlevsen
,
O.
, and
Bjerager
,
P.
, 1984, “
Narrow Reliability Bounds for Structural Systems
,”
J. Eng. Mech.
0733-9399,
110
(
5
), pp.
671
693
.
14.
Thoft-Christensen
,
P.
, and
Murotsu
,
Y.
, 1986,
Application of Structural Reliability Theory
,
Springer
,
Berlin
.
15.
Karamchandani
,
A.
, 1987, “
Structural System Reliability Analysis Methods
,” John A. Blume Earthquake Engineering Center, Stanford University, Report No. 83.
16.
Xiao
,
Q.
, and
Mahadevan
,
S.
, 1998, “
Second-Order Upper Bounds on Probability of Intersection of Failure Events
,”
J. Eng. Mech.
,
120
(
3
), pp.
49
57
. 0733-9399
17.
Ramachandran
,
K.
, 2004, “
System Reliability Bounds: A New Look With Improvements
,”
Civ. Eng. Environ. Syst.
,
21
(
4
), pp.
265
278
. 1028-6608
18.
Song
,
J.
, and
Der Kiureghian
,
A.
, 2003, “
Bounds on System Reliability by Linear Programming
,”
J. Eng. Mech.
0733-9399
129
(
6
), pp.
627
636
.
19.
Royset
,
J.
,
Der Kiureghian
,
A.
, and
Polak
,
E.
, 2001, “
Reliability-Based Optimal Design of Series Structural Systems
,”
J. Eng. Mech.
0733-9399,
127
(
6
), pp.
607
614
.
20.
Zou
,
T.
, and
Mahadevan
,
S.
, 2006, “
A Direct Decoupling Approach for Efficient Reliability Based Design Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
31
(
3
), pp.
190
200
.
21.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Nikolaidis
,
E.
, 2007, “
A Single-Loop Approach for System Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
129
(
12
), pp.
1215
1224
.
22.
McDonald
,
M.
, and
Mahadevan
,
S.
, 2008, “
Design Optimization With System-Level Reliability Constraints
,”
ASME J. Mech. Des.
0161-8458,
130
(
2
), p.
021403
.
23.
Mahadevan
,
S.
, and
Raghothamachar
,
P.
, 2000, “
Adaptive Simulation for System Reliability Analysis of Large Structures
,”
Comput. Struct.
0045-7949,
77
, pp.
725
734
.
24.
Zou
,
T.
, and
Mahadevan
,
S.
, 2006, “
Versatile Formulation for Multi-Objective Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
1217
1226
.
25.
Zhou
,
L.
,
Penmetsa
,
R. C.
, and
Grandhi
,
R. V.
, 2000, “
Structural System Reliability Prediction Using Multi-Point Approximations for Design
,”
Eighth ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability
, Paper No. PMC2000-082.
26.
Sues
,
R. H.
, and
Cesare
,
M. A.
, 2005, “
System Reliability and Sensitivity Factors via the MPPSS Method
,”
Probab. Eng. Mech.
0266-8920,
20
, pp.
148
157
.
27.
Niederreiter
,
H.
, and
Spanier
,
J.
, 2000,
Monte Carlo and Quasi-Monte Carlo Methods
,
Springer
,
Berlin
.
28.
Bucher
,
C. G.
, 1988, “
Adaptive Sampling—An Iterative Fast Monte Carlo Procedure
,”
Struct. Safety
,
5
, pp.
119
126
. 0167-4730
29.
Wu
,
Y. -T.
, 1994, “
Computational Methods for Efficient Structural Reliability and Reliability Sensitivity Analysis
,”
AIAA J.
,
32
(
8
), pp.
1717
1723
. 0001-1452
30.
Bjerager
,
P.
, 1988, “
Probability Integration by Directional Simulation
,”
J. Eng. Mech.
0733-9399,
114
, pp.
1285
1302
.
31.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
, 1983, “
First-Order Concepts in System Reliability
,”
Struct. Safety
,
1
, pp.
177
188
. 0167-4730
32.
Kleiber
,
M.
, and
Hien
,
T. D.
, 1992,
The Stochastic Finite Element Method
,
Wiley
,
New York
.
33.
Rahman
,
S.
, and
Rao
,
B. N.
, 2001, “
A Perturbation Method for Stochastic Meshless Analysis in Elastostatics
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
, pp.
1969
1991
.
34.
Yamazaki
,
F.
, and
Shinozuka
,
M.
, 1988, “
Neumann Expansion for Stochastic Finite Element Analysis
,”
J. Eng. Mech.
0733-9399,
114
, pp.
1335
1354
.
35.
Hasofer
,
A. M.
, and
Lind
,
N. C.
, 1974, “
Exact and Invariant Second-Moment Code Format
,”
J. Eng. Mech.
,
100
, pp.
111
121
. 0733-9399
36.
Wu
,
Y. T.
,
Millwater
,
H. R.
, and
Cruse
,
T. A.
, 1990, “
Advanced Probabilistic Structural Analysis Method for Implicit Performance Functions
,”
AIAA J.
0001-1452,
28
(
9
), pp.
1663
1669
.
37.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
0161-8458,
126
(
2
), pp.
225
233
.
38.
Du
,
X.
, 2008, “
Unified Uncertainty Analysis by the First Order Reliability Method
,”
ASME J. Mech. Des.
0161-8458,
130
(
9
), p.
091401
.
39.
Lee
,
S. H.
, and
Kwak
,
B. M.
, 2006, “
Response Surface Augmented Moment Method for Efficient Reliability Analysis
,”
Struct. Safety
,
28
, pp.
261
272
. 0167-4730
40.
Xu
,
H.
, and
Rahman
,
S.
, 2004, “
A Generalized Dimension-Reduction Method for Multidimensional Integration in Stochastic Mechanics
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
, pp.
1992
2019
.
41.
Yuan
,
X. -X.
, and
Pandey
,
M. D.
, 2006, “
Analysis of Approximations for Multinormal Integration in System Reliability Computation
,”
Struct. Safety
,
28
, pp.
361
377
. 0167-4730
42.
Zhao
,
Y. G.
, and
Ono
,
T.
, 2001, “
Moment Methods for Structural Reliability
,”
Struct. Safety
,
23
, pp.
47
75
. 0167-4730
43.
Choi
,
S. -K.
,
Grandhi
,
R. V.
, and
Canfied
,
R. A.
, 2007,
Reliability-Based Structural Design
,
Springer
,
London
.
44.
Youn
,
B. D.
, and
Choi
,
K. K.
, 2004, “
A New Response Surface Methodology for Reliability Based Design Optimization
,”
Comput. Struct.
0045-7949,
82
, pp.
241
256
.
45.
Myers
,
R. H.
, and
Montgomery
,
D. C.
, 1995,
Response Surface Methodology: Process and Product in Optimization Using Designed Experiments
,
Wiley
,
New York
.
46.
Johnson
,
N. L.
,
Kotz
,
S.
, and
Balakrishnan
,
N.
, 1995,
Continuous Univariate Distributions
,
Wiley
,
New York
.
47.
Youn
,
B. D.
,
Choi
,
K. K.
,
Gu
,
L.
, and
Yang
,
R. -J.
, 2004, “
Reliability-Based Design Optimization for Crashworthiness of Side Impact
,”
Struct. Multidiscip. Optim.
1615-147X,
26
(
3–4
), pp.
272
283
.
48.
Youn
,
B. D.
,
Wells
,
L. J.
, and
Lee
,
H. K.
, 2007, “
Probabilistic Fatigue Analysis Using the Eigenvector Dimension Reduction (EDR) Method
,”
WCSMO
, Seoul, Korea, Paper No. A0181.
49.
Hailperin
,
T.
, 1965, “
Best Possible Inequalities for the Probability of a Logical Function of Events
,”
Am. Math. Monthly
0002-9890,
72
(
4
), pp.
343
359
.
You do not currently have access to this content.