This paper presents a vector method for measuring rigid body motion from marker coordinates, including both finite and infinitesimal displacement analyses. The common approach to solving the finite displacement problem involves the determination of a rotation matrix, which leads to a nonlinear problem. On the contrary, infinitesimal displacement analysis is a linear problem that can be easily solved. In this paper we take advantage of the linearity of infinitesimal displacement analysis to formulate the equations of finite displacements as a generalization of Rodrigues’ formula when more than three points are used. First, for solving the velocity problem, we propose a simple method based on a mechanical analogy that uses the equations that relate linear and angular momenta to linear and angular velocities, respectively. This approach leads to explicit linear expressions for infinitesimal displacement analysis. These linear equations can be generalized for the study of finite displacements by using an intermediate body whose points are the midpoint of each pair of homologous points at the initial and final positions. This kind of transformation turns the field of finite displacements into a skew-symmetric field that satisfies the same equations obtained for the velocity analysis. Then, simple closed-form expressions for the angular displacement, translation, and position of finite screw axis are presented. Finally, we analyze the relationship between finite and infinitesimal displacements, and propose vector closed-form expressions based on derivatives or integrals, respectively. These equations allow us to make one of both analyses and to obtain the other by means of integration or differentiation. An experiment is presented in order to demonstrate the usefulness of this method. The results show that the use of a set of markers with redundant information (n>3) allows a good accuracy of measurement of kinematic variables.

1.
Dai
,
J. S.
, 2006, “
A Historical Review of the Theoretical Development of Rigid Body Displacement From Rodrigues Parameters to the Finite Twist
,”
Mech. Mach. Theory
0094-114X,
41
(
1
), pp.
41
52
.
2.
Eberharter
,
J. K.
, and
Ravani
,
B.
, 2004, “
Kinematic Registration Using Line Geometry
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC
, Salt Lake City, UT, Sept. 28–Oct. 2.
3.
Eberharter
,
J. K.
, and
Ravani
,
B.
, 2006, “
Kinematic Registration in 3D Using the 2D Reuleaux Method
,”
ASME J. Mech. Des.
0161-8458,
128
(
2
), pp.
349
355
.
4.
Beggs
,
J. S.
, 1966,
Advanced Mechanism
,
Macmillan
,
New York
.
5.
Gupta
,
K. C.
, and
Chutakanonta
,
P.
, 1998, “
Accurate Determination of Object Position From Imprecise Data
,”
ASME J. Mech. Des.
0161-8458,
120
(
4
), pp.
559
564
.
6.
Spoor
,
C. W.
, and
Veldpaus
,
F. E.
, 1980, “
Rigid Motion Calculated From Spatial Co-Ordinates of Marker
,”
J. Biomech.
0021-9290,
13
(
4
), pp.
391
393
.
7.
Veldpaus
,
F. E.
,
Woltring
,
H. J.
, and
Dortmans
,
J. M. G.
, 1988, “
A Least-Squares Algorithm for the Equiform Transformation From Spatial Marker Co-Ordinates
,”
J. Biomech.
0021-9290,
21
(
1
), pp.
45
54
.
8.
Söderkvist
,
I.
, and
Wedin
,
P. A.
, 1993, “
Determining the Movements of the Skeleton Using Well-Configured Markers
,”
J. Biomech.
0021-9290,
26
(
12
), pp.
1473
1477
.
9.
Challis
,
J. H.
, 1995, “
A Procedure for Determining Rigid Body Transformation Parameter
,”
J. Biomech.
0021-9290,
28
(
6
), pp.
733
737
.
10.
Woltring
,
H. J.
,
Huiskes
,
R.
,
De Lange
,
A.
, and
Veldpaus
,
F. E.
, 1985, “
Finite Centroid and Helical Axis Estimation From Noisy Landmark Measurements in the Study of Human Joint Kinematics
,”
J. Biomech.
0021-9290,
18
(
5
), pp.
379
389
.
11.
Bottema
,
O.
, and
Roth
,
B.
, 1979,
Theoretical Kinematics
,
North-Holland
,
Amsterdam
.
12.
Angeles
,
J.
, 1986, “
Automatic Computation of the Screw Parameters of Rigid Body Motions. Part 1: Finitely-Separated Positions
,”
ASME J. Dyn. Syst., Meas., Control
,
108
(
1
), pp.
323
338
. 0022-0434
13.
Horn
,
B. K. P.
, 1987, “
Closed-Form Solution of Absolute Orientation Using Unit Quaternions
,”
J. Opt. Soc. Am. A
0740-3232,
4
(
4
), pp.
629
642
.
14.
Huang
,
C.
,
Ravani
,
B.
, and
Kuo
,
W.
, 2008, “
A Geometric Interpretation of Finite Screw Systems Using the Bisecting Linear Line Complex
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
102303
.
15.
Woltring
,
H. J.
,
Long
,
K.
,
Osterbauer
,
P. J.
, and
Fuhr
,
A. W.
, 1994, “
Instantaneous Helical Axis Estimation From 3-D Video Data in Neck Kinematics for Whiplash Diagnostics
,”
J. Biomech.
0021-9290,
27
(
12
), pp.
1415
1432
.
16.
Vithani
,
A. R.
, and
Gupta
,
K. C.
, 2004, “
Estimation of Object Kinematics From Point Data
,”
ASME J. Mech. Des.
0161-8458,
126
(
1
), pp.
16
21
.
17.
Page
,
A.
,
Mata
,
V.
,
Hoyos
,
J. V.
, and
Porcar
,
R.
, 2007, “
Instantaneous Screw Axis Experimental Determination in Human Motions: Error Analysis
,”
Mech. Mach. Theory
0094-114X,
42
, pp.
429
441
.
18.
Hervé
,
J. M.
, 1999, “
The Lie Group of Rigid Body Displacements, A Fundamental Tool for Mechanism Design
,”
Mech. Mach. Theory
0094-114X,
34
(
5
), pp.
719
730
.
19.
Davidson
,
J. K.
, and
Hunt
,
K. H.
, 2004,
Robots and Screw Theory: Applications of Kinematics and Statics to Robotics
,
Oxford University Press
,
Oxford
.
20.
Hunt
,
K. H.
, and
Parkin
,
I. A.
, 1995, “
Finite Displacements of Points, Planes and Lines Via Screw Theory
,”
Mech. Mach. Theory
0094-114X,
30
(
2
), pp.
177
192
.
21.
Parkin
,
I. A.
, 1997, “
Unifying the Geometry of Finite Displacement Screws and Orthogonal Matrix Transformations
,”
Mech. Mach. Theory
0094-114X,
32
, pp.
975
991
.
22.
Parkin
,
I. A.
, 1992, “
A Third Conformation With the Screw Systems: Finite Twist Displacements of a Directed Line and Point
,”
Mech. Mach. Theory
0094-114X,
27
(
2
), pp.
177
188
.
23.
Page
,
A.
,
Candelas
,
P.
, and
Belmar
,
F.
, 2006, “
On the Use of Local Fitting Techniques for the Analysis of Physical Dynamic Systems
,”
Eur. J. Phys.
0143-0807,
27
, pp.
273
279
.
24.
Chen
,
C. -H.
, 2006, “
Geometrical Way for Describing Body Motion and Equations of Relationships Between Geometrical and Kinematical Parameters
,”
Mech. Mach. Theory
0094-114X,
41
, pp.
283
306
.
25.
Yang
,
A. T.
, 1974, “
Calculus of Screws
,”
Basic Questions of Design Theory
,
W. R.
Spillers
, ed.,
Elsevier
,
New York
, pp.
265
281
.
26.
Parkin
,
I. A.
, 1997, “
Dual Systems of Finite Displacement Screws in the Screw Triangle
,”
Mech. Mach. Theory
0094-114X,
32
(
8
), pp.
993
1003
.
27.
Sommer
,
H. J.
, III
, 1992, “
Determination of First and Second Order Instant Screw Parameters From Landmark Trajectories
,”
ASME J. Mech. Des.
0161-8458,
114
, pp.
274
282
.
28.
Hiller
,
M.
, and
Woernle
,
C.
, 1984, “
A Unified Representation of Spatial Displacements
,”
Mech. Mach. Theory
0094-114X,
19
(
6
), pp.
477
486
.
You do not currently have access to this content.