This paper presents the explicit mapping relations between topological structure and position and orientation characteristic (POC) of mechanism motion output. It deals with (1) the symbolic representation and the invariant property of the topological structure of the mechanism, (2) the matrix representation of POC of mechanism motion output, and (3) the POC equations of serial and parallel mechanisms and the corresponding symbolic operation rules. The symbolic operation involves simple mathematic tools and fewer operation rules and has clear geometrical meaning, so it is easy to use. The POC equations cannot only be used for structural analysis of the mechanism (such as determining POC of the relative motion between any two links of a mechanism and the rank of single-loop kinematic chain and calculating the full-cycle DOF of a mechanism, etc.) but can be used for structural synthesis of the mechanism as well (e.g., structural synthesis of the rank-degenerated serial mechanism, the over constrained single-loop mechanism, and the rank-degenerated parallel mechanism, etc.).

1.
Merlet
,
J. P.
, 2002, “
An Initiative for the Kinematics Study of Parallel Manipulators
,”
Proceedings of the Workshop on Fundamental Issues and Future Research Direction for Parallel Mechanisms and Manipulators
,
Quebec
, pp.
2
9
.
2.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
Oxford
.
3.
Hunt
,
K. H.
, 1983, “
Structural Kinematics of In-Parallel-Actuated Robot-Arms
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
, pp.
705
712
.
4.
Tsai
,
L. W.
, and
Stamper
,
R.
, 1996, “
A Parallel Manipulator With Only Translation Degrees of Freedom
,” ASME Paper No. DETC/MECH-1152.
5.
Tsai
,
L. W.
, 1999, “
The Enumeration of a Class of Three-DOF Parallel Manipulators
,”
Proceedngs of the Tenth World Congress of the Theory of Machine and Mechanisms
,
Finland
, pp.
1121
1126
.
6.
Huang
,
Z.
, and
Li
,
Q. C.
, 2002, “
General Methodology for Type Synthesis of Lower-Mobility Symmetrical Parallel Manipulators and Several Novel manipulators
,”
Int. J. Robot. Res.
0278-3649,
21
, pp.
131
145
.
7.
Huang
,
Z.
, and
Li
,
Q. C.
, 2003, “
Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint-Synthesis Method
,”
Int. J. Robot. Res.
0278-3649,
22
, pp.
59
79
.
8.
Angeles
,
J.
, 2002, “
The Quantitative Synthesis of Parallel Manipulators
,”
Proceedings of the workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators
,
Quebec
, pp.
160
169
.
9.
Kim
,
H. S.
, and
Tsai
,
L. W.
, 2003, “
Kinematic Synthesis of a Spatial 3-RPS Parallel Platform
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
92
97
.
10.
Carricato
,
M.
, and
Parenti-Castelli
,
V.
, 2003, “
A Family of 3-DOF Translational Parallel Manipulators
,”
ASME J. Mech. Des.
1050-0472,
125
pp.
302
307
.
11.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2004, “
Type Synthesis of 3-DOF Spherical Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
101
108
.
12.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2004, “
Type Synthesis of 3-DOF Translational Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
83
92
.
13.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2005, “
Type Synthesis of 3-DOF PPR-Equivalent Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
1113
1121
.
14.
Herve
,
J. M.
, 1978, “
Analyses Structurelle Des Mecanismes Par Groupe des Replacements
,”
Mech. Mach. Theory
0094-114X,
13
, pp.
437
450
.
15.
Herve
,
J. M.
, 1995, “
Design of Parallel Manipulators via the Displacement Group
,”
Proceedings of the Ninth World Congess, on Theory of Machine and Mechanisms
,
Milan
, pp.
2079
2082
.
16.
Fanghella
,
P.
, and
Galletti
,
C.
, 1994, “
Mobility Analysis of Single-loop Kinematic Chains: An Algorithmic Approach Based on Displacement Groups
,”
Mech. Mach. Theory
0094-114X,
29
, pp.
1187
1204
.
17.
Fanghella
,
P.
, and
Galletti
,
C.
, 1995, “
Metric Relations and Displacement Groups in Mechanism and Robot Kinematics
,”
ASME J. Mech. Des.
1050-0472,
117
, pp.
470
478
.
18.
Huynh
,
P.
, and
Hervé
,
J. M.
, 2005, “
Equivalent Kinematic Chains of Three Degree-of-Freedom Tripod Mechanisms With Planar-Spherical Bonds
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
95
102
.
19.
Li
,
Q. C.
,
Huang
,
Z.
, and
Hervé
,
J. M.
, 2004, “
Type Synthesis of 3R2T 5-DOF Parallel Mechanisms Using the Lie Group of Displacements
,”
IEEE Trans. Rob. Autom.
1042-296X,
20
. pp.
173
180
.
20.
Rico
,
J. M.
,
Cervantes-Schez
,
A.
, and
Tadeo-Chez
,
G. I.
, 2006, “
A Comprehensive Theory of Type Synthesis of Fully Parallel Platforms
,” ASME Paper No. DETC2006-99070.
21.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
, 2005, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
220
229
.
22.
Di Gregorio
,
R.
, and
Parenti-Castelli
,
V.
, 2002, “
Mobility Analysis of the 3-UPU Parallel Mechanism Assembled for a Pure Translational Motion
,”
ASME J. Mech. Des.
1050-0472,
124
pp.
259
264
.
23.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2005, “
Type Synthesis of 3-DOF PPR-Equivalent Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
1113
1121
.
24.
Li
,
Q. C.
, and
Huang
,
Z.
, 2004, “
Mobility Analysis of a Novel 3-5R Parallel Mechanism Family
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
79
82
.
25.
Rico
,
J. M.
, and
Ravani
,
B.
, 2003, “
On Mobility Analysis of Linkage Using Group Theory
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
70
80
.
26.
Rico
,
J. M.
,
Aguilera
,
L. D.
,
Gallardo
,
J.
,
Rodríguez
,
R.
,
Orozco
,
H.
, and
Barrera
,
J. M.
, 2006, “
A More General Mobility Criterion For Parallel Manipulators
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
207
219
.
27.
Yang
,
T.-L.
, 1983, “
Structural Analysis and Number Synthesis of Spatial Mechanisms
,”
Proceedings of the Sixth World Congress, on the Theory of Machines and Mechanisms
,
New Delhi
, Vol.
1
, pp.
280
283
.
28.
Yang
,
T.-L.
, 1986, “
Kinematic Structural Analysis and Synthesis of Over-Constrained Spatial Single-Loop-Chains
,” ASME Paper No.86-DET-189.
29.
Yang
,
T.-L.
, and
Sun
,
D.-J.
, 2006, “
General Formula of Degree of Freedom for Parallel Mechanisms and Its Application
,” ASME Paper No. DETC2006-99129.
30.
Yang
,
T.-L.
, and
Yao
,
F.-H.
, 1988, “
Topological Characteristics and Automatic Generation of Structural Analysis and Synthesis of Plane Mechanisms—Part I: Theory, Part II: Application
,”
Proceedings of ASME Mechanisms Conference
,
Phoenix
, DE-Vol.
15-1
, pp.
179
190
.
31.
Rico
,
J. M.
, and
Ravani
,
B.
, 2007, “
On Calculating the Degree of Freedom or Mobility of Overconstrained Linkages: Single-Loop Exceptional Linkages
,”
ASME J. Mech. Des.
1050-0472,
129
, pp.
301
311
.
32.
Yang
,
T.-L.
, and
Sun
,
D.-J.
, 2008, “
Rank and Mobility of Single Loop Kimematic Chains
,” ASME Paper No. DETC2008-49076.
33.
Yang
,
T.-L.
, and
Sun
,
D.-J.
, 2008, “
A General Formula of Degree of Freedom of Parallel Mechanisms
,” ASME Paper No. DETC2008-49077.
34.
Han
,
C.
,
Kin
,
J.
et al.
, 2002, “
Kinematic Sensitivity Analysis of the 3-UPU Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
37
, pp.
787
798
.
35.
Shi
,
Z.-X.
,
Luo
,
Y.-F.
,
Hang
,
L.-B.
, and
Yang
,
T.-L.
, 2007, “
A Simple Method for Inverse Kinematic Analysis of the General 6R Serial Robot
,”
ASME J. Mech. Des.
1050-0472
129
(
8
), pp.
793
798
.
36.
Yang
,
T.-L.
,
Jin
,
Q.
et al.
, 2001, “
A General Method for Structure Type Synthesis of Rank-Degenerated Parallel Mechanism Based on Single-Open-Chain
,”
Mach. Sci. Technol.
1091-0344,
20
(
3
), pp.
321
325
(in Chinese).
37.
Yang
,
T.-L.
,
Jin
,
Q.
et al.
, 2001, “
Structural Synthesis of 4-DOF (3-Translational and 1-Rotation) Parallel Robot Mechanisms Based on the Units of Single-Opened-Chain
,” ASME Paper No. DETC2001/DAC-21152.
38.
Jin
,
Q.
,
Yang
,
T. L.
, 2001, “
Structure Synthesis of a Class of Five-DOF Parallel Robot Mechanisms Based on Single-Opened-Chain Units
,” ASME Paper No. DETC/DAC-21153.
39.
Jin
,
Q.
, and
Yang
,
T. L.
, 2002, “
Structure Synthesis and Analysis of Parallel Manipulators With 2-Dimension Translation and 1-Dimension Rotation
,” ASME Paper No. DETC 2002/MECH 34307.
40.
Jin
,
Q.
, and
Yang
,
T. L.
, 2002, “
Synthesis and Analysis of a Group of 3 DOF (1T-2R) Decoupled Parallel Manipulator
,” ASME Paper No. DETC 2002/MECH 34240.
41.
Jin
,
Q.
, and
Yang
,
T.-L.
, 2004, “
Synthesis and Analysis of a Group of 3-Degree-of-Freedom Partially Decoupled Parallel Manipulators
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
301
306
.
42.
Jin
,
Q.
, and
Yang
,
T.-L.
, 2004, “
Theory for Topology Synthesis of Parallel Manipulators and Its Application to Three-Dimension-Translation Parallel Manipulators
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
625
639
.
43.
Yang
,
T.-L.
,
Liu
,
A.-X.
,
Jin
,
Q.
,
Luo
,
Y.-F.
,
Shen
,
H.-P.
, and
Hang
,
L.-B.
, 2008, “
Position and Orientation Characteristic Equation for Topological Design of Serial Mechanisms
,” ASME Paper No. DETC2008-49074.
44.
Yang
,
T.-L.
,
Liu
,
A.-X.
,
Jin
,
Q.
,
Luo
,
Y.-F.
,
Shen
,
H.-P.
, and
Hang
,
L.-B.
, 2008, “
Position and Orientation Characteristic Equation for Topological Design of Parallel Mechanisms
,” ASME Paper No. DETC2008-49075.
You do not currently have access to this content.