The infinitely variable transmissions (IVTs) allow the transmission ratio to vary with continuity, offering the possibility of also reaching zero values for the transmission ratio and the motion inversion. In this paper an original infinitely variable transmission system is described (MG-IVT). MG-IVT is made up of the coupling of a continuously variable transmission, a planetary gear train, and two ordinary transmissions with a constant transmission ratio. By means of two frontal clutches, the MG-IVT is allowed to get two different configurations. The main purpose is to get the configurations that make the optimal efficiency of the transmission at different transmission ratios. Kinetic characteristics of single component devices are obtained, and the MG-IVT system’s performance is determined by considering how the efficiency of the component devices change as a function of operating conditions. The advantages of the MG-IVT are therefore shown in terms of power and efficiency in comparison to the traditional IVT.

1.
Machida
,
H.
, 1999, “
Traction Drive CVT Up to Date
,”
Proceedings of the International Congress on Continuously Variable Transmission CVT’99
, Eindhoven, The Netherlands, September 16–17, 1999, pp.
71
76
.
2.
Blouin
,
V. Y.
,
Fadel
,
G. M.
,
Haque
,
I. U.
,
Wagner
,
J. R.
, and
Samuels
,
H. B.
, 2004, “
Continuously Variable Transmission Design for Optimum Vehicle Performance by Analytical Target Cascading
,”
Int. J. Heavy Veh. Syst.
,
11
(
3–4
), pp.
327
348
.
3.
Zhang
,
Y.
,
Lin
,
H.
,
Zhang
,
B.
, and
Mi
,
C.
, 2006, “
Performance Modeling and Optimization of a Novel Multi-Mode Hybrid Powertrain
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
79
89
.
4.
Tanaka
,
H.
, 2002, “
Speed Ratio Control of a Parallel Layout Double Cavity Half-Toroidal CVT for Four-Wheel Drive
,”
JSAE Rev.
0389-4304,
23
(
2
), pp.
213
217
.
5.
Akehurst
,
S.
,
Parker
,
D. A.
, and
Schaaf
,
S.
, 2006, “
CVT Rolling Traction Drives: A Review of Research Into Their Design, Functionality, and Modeling
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
1165
1176
.
6.
Kim
S.
,
Moore
C.
,
Peshkin
M.
, and
Colgate
J. E.
, 2008, “
Causes of Microslip in a Continuously Variable Transmission
,”
ASME J. Mech. Des.
1050-0472,
130
(
1
), pp.
011010
.
7.
Tellermann
,
U.
, 2007, “
Full Toroidal CVT in a Mechanical Hybrid Configuration
,”
Proceedings of the International CTI-Symposium Innovative Automotive Transmissions
,
Berlin, Germany
, 3–7 Dec. 2007.
8.
Akehurst
,
S.
,
Parker
,
D. A.
, and
Schaaf
,
S.
, 2007, “
Dynamic Modeling of the Milner Continuously Variable Transmission: The Basic Kinematics
,”
ASME J. Mech. Des.
0161-8458,
129
, pp.
1170
1178
.
9.
Zhang
,
Y.
,
Lin
,
H.
,
Zhang
,
B.
, and
Mi
,
C.
, 2006, “
Performance Modeling and Optimization of a Novel Multi-Mode Hybrid Powertrain
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
79
89
.
10.
Faulring
,
E. L.
,
Colgate
,
I. E.
, and
Peshkin
,
M. A.
, 2007, “
Power Efficiency of the Rotational-to-Linear Infinitely Variable Cobotic Transmission
,”
ASME J. Mech. Des.
0161-8458,
129
, pp.
1285
1293
.
11.
Cacciatori
,
E.
,
Bonnet
,
B.
,
Vaughan
,
N. D.
,
Burke
,
M. P.
,
Price
,
D. T.
, and
Wejrzanowski
,
K.
, “
Launch and Driveability Performance Enhancement for a Parallel Hybrid With a Torque Controlled IVT
,” SAE Paper No. 2005-01-3831.
12.
Kim
,
K.
,
Park
,
F. C.
,
Park
,
Y.
, and
Shizuo
,
M.
, 2002, “
Design and Analysis of a Spherical Variable Transmission
,”
ASME J. Mech. Des.
0161-8458,
124
, pp.
21
29
.
13.
Cho
,
B.
, and
Vaughan
,
N. D.
, 2006, “
Dynamic Simulation Model of a Hybrid Powertrain and Controller Using Co-Simulation—Part I: Powertrain Modelling
,”
Int. J. Autom. Technology.
,
7
, pp.
459
468
.
14.
Chan
,
C. C.
, 2002, “
The State of the Art of Electric and Hybrid Vehicles
,”
Proc. IEEE
0018-9219,
90
(
2
), pp.
247
275
.
15.
Lukic
,
S. M.
, and
Emadi
,
A.
, 2004, “
Effects of Drivetrain Hybridization on Fuel Economy and Dynamic Performance of Parallel Hybrid Electric Vehicles
,”
IEEE Trans. Veh. Technol.
0018-9545,
53
(
2
), pp.
385
389
.
16.
Syed
,
F. U.
,
Kuang
,
M. L.
,
Czubay
,
J.
, and
Ying
,
H.
, 2006, “
Derivation and Experimental Validation of a Power-Split Hybrid Electric Vehicle Model
,”
IEEE Trans. Veh. Technol.
,
55
(
6
), pp.
1731
1747
. 0018-9545
17.
Mangialardi
,
L.
, and
Mantriota
,
G.
, 1999, “
Power Flows and Efficiency in Infinitely Variable Transmissions
,”
Mech. Mach. Theory
0094-114X,
34
(
7
), pp.
973
994
.
18.
Huang
,
X.
,
Zhao
,
K.
,
Luo
,
Y.
, and
Liu
,
W.
, 2005, “
Study on a New Split Type of HEV Powertrains
,”
Int. J. Veh. Des.
0143-3369,
38
(
1
), pp.
96
105
.
19.
Kim
,
Y. S.
,
Park
,
J. M.
, and
Choi
,
S. H.
, 2006, “
Design and Performance Verification of Compound CVTs With 2K-H I Type Differential Gear
,”
J. Mech. Sci. Technol.
,
20
(
6
), pp.
770
781
.
20.
Benitez
,
F. G.
,
Madrigal
,
J. M.
, and
del Castillo
,
J. M.
, 2004, “
Infinitely Variable Transmission of Racheting Drive Type Based on One-Way Clutches
,”
ASME J. Mech. Des.
0161-8458,
126
, pp.
673
682
.
21.
Savaresi
,
S. M.
,
Taroni
,
F. L.
,
Previdi
,
F.
, and
Bittanti
,
S.
, 2004, “
Control System Design on a Power-Split CVT for High-Power Agricultural Tractors
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
9
(
3
), pp.
569
579
.
22.
Mantriota
,
G.
, 2002, “
Performances of a Series Infinitely Variable Transmission With a Type I Power Flow
,”
Mech. Mach. Theory
0094-114X,
37
(
6
), pp.
579
597
.
23.
Mantriota
,
G.
, 2002, “
Performances of a Parallel Infinitely Variable Transmission With a Type II Power Flow
,”
Mech. Mach. Theory
0094-114X,
37
(
6
), pp.
555
578
.
24.
Lee
,
H.
, and
Kim
,
H.
, 2003, “
CVT Ratio Control for Improvement of Fuel Economy by Considering Powertrain Response Lag
,”
KSME Int. J.
1226-4865,
17
(
11
), pp.
1725
1731
.
25.
Yeo
H.
,
Hwang
S.
, and
Kim
H.
, 2006, “
Regenerative Braking Algorithm for a Hybrid Electric Vehicle With CVT Ratio Control
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
220
(
D11
), pp.
1589
1600
.
26.
Mantriota
,
G.
, 2001, “
Theoretical and Experimental Study of a Power Split Continuously Variable Transmission System
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
215
(
D7
), pp.
837
850
.
27.
Mantriota
,
G.
, 2001, “
Theoretical and Experimental Study of a Power Split Continuously Variable Transmission System
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
215
(
D7
), pp.
851
864
.
28.
Mantriota
,
G.
, and
Pennestrì
,
E.
, 2003, “
Theoretical and Experimental Efficiency Analysis of Multi DOF Epicyclic Gear Trains
,”
Multibody Syst. Dyn.
,
9
(
4
), pp.
389
408
. 1384-5640
You do not currently have access to this content.