This paper presents a new systematic method for identifying the values of the machine-tool settings required to obtain flank form modifications in hypoid gears. The problem is given a nonlinear least-squares formulation, and it is solved by the Levenberg–Marquardt method with a trust-region strategy. To test the method, the same ease-off topography was obtained by means of very different sets of machine-tool settings, including a set of only kinematic parameters and a highly redundant set of 17 parameters. In all cases, the goal was achieved in a few iterations, with residual errors well below machining tolerances and, even more importantly, with realistic values of all parameters. Therefore, significant improvements in practical gear design can be achieved by employing the overall proposed procedure.

1.
Gleason Corporation
, 2007, “
Computer Aided Gear Engineering (CAGE™)
,” http://www.gleason.com/b_software_cage.html, accessed July 16.
2.
Thomas
,
J.
, and
Vogel
,
O.
, 2005, “
6M Machine Kinematics for Bevel and Hypoid Gears
,”
VDI-Berichte No. 1904
, Vol.
1
,
VDI
,
Garching
, pp.
435
451
.
3.
Krenzer
,
T. J.
, and
Knebel
,
R.
, 1983, “
Computer Aided Inspection of Bevel and Hypoid Gears
,”
Proceedings of the International Off-Highway Meeting
, Milwaukee, December 1983, SAE Paper No. 831266.
4.
Krenzer
,
T. J.
, 1984, “
Computer Aided Corrective Machine Settings for Manufacturing Bevel and Hypoid Gear Sets
,”
Proceedings of the Fall Technical Meeting
, Washington D.C., October 1984, AGMA Paper No. 84FTM4.
5.
Stadtfeld
,
H. J.
, 1993,
Handbook of Bevel and Hypoid Gears
,
Rochester Institute of Technology
,
Rochester, NY
.
6.
Litvin
,
F. L.
,
Zhang
,
Y.
,
Kieffer
,
J.
, and
Handschuh
,
R. F.
, 1991, “
Identification and Minimization of Deviations of Real Gear Tooth Surfaces
,”
ASME J. Mech. Des.
0161-8458,
113
, pp.
55
62
.
7.
Litvin
,
F. L.
,
Kuan
,
C.
,
Wang
,
J.
,
Handschuh
,
R.
,
Masseth
,
J.
, and
Maruyama
,
N.
, 1993, “
Minimization of Deviations of Gear Real Tooth Surfaces by Coordinate Measurements
,”
ASME J. Mech. Des.
0161-8458,
115
, pp.
995
1001
.
8.
Lin
,
C.-Y.
,
Tsay
,
C.-B.
, and
Fong
,
Z.-H.
, 1998, “
Computer-Aided Manufacturing of Spiral Bevel and Hypoid Gears With Minimum Surface Deviation
,”
Mech. Mach. Theory
0094-114X,
33
, pp.
785
803
.
9.
Gosselin
,
C.
,
Nonaka
,
T.
,
Shiono
,
Y.
,
Kubo
,
A.
, and
Tatsuno
,
T.
, 1998, “
Identification of the Machine Settings of Real Hypoid Gear Tooth Surface
,”
ASME J. Mech. Des.
0161-8458,
120
, pp.
429
440
.
10.
Gabiccini
,
M.
,
Artoni
,
A.
,
Di Puccio
,
F.
, and
Guiggiani
,
M.
, 2007, “
A Regularization Method for Hypoid Gear Synthesis Using the Invariant Approach
,”
Proceedings of the 12th IFToMM World Congress
, Besançon, June
18
21
.
11.
Lin
,
C.-Y.
,
Tsay
,
C.-B.
, and
Fong
,
Z.-H.
, 2001, “
Computer-Aided Manufacturing of Spiral Bevel and Hypoid Gears by Applying Optimization Techniques
,”
J. Mater. Process. Technol.
,
114
, pp.
22
35
. 0924-0136
12.
Di Puccio
,
F.
,
Gabiccini
,
M.
, and
Guiggiani
,
M.
, 2005, “
Alternative Formulation of the Theory of Gearing
,”
Mech. Mach. Theory
0094-114X,
40
(
5
), pp.
613
637
.
13.
Di Puccio
,
F.
,
Gabiccini
,
M.
, and
Guiggiani
,
M.
, 2006, “
Generation and Curvature Analysis of Conjugate Surfaces Via a New Approach
,”
Mech. Mach. Theory
0094-114X,
41
(
4
), pp.
382
404
.
14.
Di Puccio
,
F.
,
Gabiccini
,
M.
, and
Guiggiani
,
M.
, 2007, “
An Invariant Approach for Gear Generation With Supplemental Motions
,”
Mech. Mach. Theory
0094-114X,
42
(
3
), pp.
275
295
.
15.
Stadtfeld
,
H. J.
, 2000,
Advanced Bevel Gear Technology
,
The Gleason Works
,
Rochester
.
16.
Fan
,
Q.
, 2007, “
Enhanced Algorithms of Contact Simulation for Hypoid Gear Drives Produced by Face-Milling and Face-Hobbing Processes
,”
ASME J. Mech. Des.
0161-8458,
129
(
1
), pp.
31
37
.
17.
Baxter
,
M. L.
, 1970,
Exact Determination of Tooth Surfaces for Spiral Bevel and Hypoid Gears
,
The Gleason Works
,
Rochester, NY
.
18.
Euler
,
L.
, 1775, “
Nova Methodus Motum Corporum Rigidorum Determinandi
,”
Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae
,
20
, pp.
208
238
.
19.
Dennis
,
J. E.
, and
Schnabel
,
R. B.
, 1983,
Numerical Methods for Unconstrained Optimization and Nonlinear Equations
,
Prentice Hall
,
Englewood Cliffs, NJ
.
20.
Nocedal
,
J.
, and
Wright
,
S. J.
, 1999,
Numerical Optimization
,
Springer-Verlag
,
New York
.
21.
Hansen
,
P. C.
, 1997,
Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion
,
SIAM
,
Philadelphia
.
22.
Gould
,
N. I. M.
,
Orban
,
D.
,
Sartenaer
,
A.
, and
Toint
,
P. L.
, 2005, “
Sensitivity of Trust-Region Algorithms to Their Parameters
,”
4OR: A Quarterly Journal of Operations Research
,
3
(
3
), pp.
227
241
.
23.
Gill
,
P. E.
,
Murray
,
W.
, and
Wright
,
M. H.
, 1982,
Practical Optimization
,
Elsevier
,
San Diego, CA
.
24.
Advanced Numerical Solutions
, 2007, “
Hypoid Face Milled
,” http://www.ansol.com/HypoidFaceMilled.htmlhttp://www.ansol.com/HypoidFaceMilled.html, accessed Sept. 18.
You do not currently have access to this content.