Dimensional variation in assembled products directly affects product performance. To reduce dimensional variation, it is necessary that an assembly be robust. A robust assembly is less sensitive to input variation from the product and process components, such as incoming parts, subassemblies, fixtures, and welding guns. In order to effectively understand the sensitivity of an assembly to input variation, an appropriate set of metrics must be defined. In this paper, three product-oriented indices, including pattern sensitivity index, component sensitivity index, and station sensitivity index, are defined. These indices can be utilized to measure the variation influence of a pattern, an individual part, and/or component, and components at a particular station to the dimensional quality of a final assembly. Additionally, the relationships among these sensitivity indices are established. Based on these relationships, the ranges of the sensitivity indices are derived. Finally, a case study of a sheet metal assembly is presented and discussed to illustrate the applicability of these metrics.

1.
Taguchi
,
G.
, and
Wu
,
Y.
, 1979, “
Introduction to Off-Line Quality Control
,
Central Japan Quality Control Association
,
Meieki Nakamura-Ku Magaya, Japan
.
2.
Arora
,
J. S.
, and
Haug
,
E. J.
, 1979, “
Methods of Design Sensitivity Analysis in Structural Optimization
,”
AIAA J.
0001-1452,
17
(
9
), pp.
970
974
.
3.
Beltracchi
,
T. J.
, and
Gabriele
,
G. A.
, 1988, “
A RQP Based Method for Estimating Parameter Sensitivity Derivatives
,”
Proceedings of Design Automation Conference
,
ASME
, New York, Vol.
14
, pp.
155
164
.
4.
Phadke
,
M. S.
, 1989,
Quality Engineering Using Robust Design
,
Prentice Hall
, Englewood Cliffs, NJ.
5.
Parkinson
,
A.
,
Sorensen
,
C.
,
Free
,
J.
, and
Canfield
,
B.
, 1990, “
Tolerances and Robustness in Engineering Design Optimization
,”
Proceedings of 1990 ASME Design Automation Conference
, Sept., Chicago,
ASME
, New York, Vol.
2
, pp.
121
128
.
6.
Parkinson
,
A.
,
Sorensen
,
C.
, and
Pourhassan
,
N.
, 1993, “
A General Approach for Robust Optimal Design
,”
ASME J. Mech. Des.
1050-0472,
115
, pp.
74
80
.
7.
Parkinson
,
A.
, 1995, “
Robust Mechanical Design Using Engineering Models
,”
ASME J. Mech. Des.
1050-0472,
117
, pp.
48
54
.
8.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K.-L.
, and
Mistree
,
F.
, 1996, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
1050-0472,
118
, pp.
478
485
.
9.
Ting
,
K.
, and
Long
,
Y.
, 1996, “
Performance Quality and Tolerance Sensitivity of Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
118
(
1
), pp.
144
150
.
10.
Cai
,
W.
,
Hu
,
S. J.
, and
Yuan
,
J. X.
, 1997, “
A Variational Method of Robust Fixture Configuration Design for 3-D Workpieces
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
, pp.
593
602
.
11.
Gao
,
J.
,
Chase
,
K. W.
, and
Magleby
,
S. P.
, “Global Coordinate Method for Determining Sensitivity in Assembly Tolerance Analysis,” http://adcats.et.byu.edu/WWW/Publication/98-3/Paper6_2col_6=29=98.htmlhttp://adcats.et.byu.edu/WWW/Publication/98-3/Paper6_2col_6=29=98.html
12.
Söderberg
,
R.
, and
Lindkvist
,
L.
, 1999, “
Computer Aided Assembly Robustness Evaluation
,”
J. Eng. Design
0954-4828,
10
(
2
), pp.
165
181
.
13.
Thornton
,
A. C.
, 2000, “
Quantitative Selection of Variation Reduction Plans
,”
ASME J. Mech. Des.
1050-0472,
122
, pp.
185
193
.
14.
Ding
,
Y.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 2002, “
Design Evaluation of Multi-Station Assembly Processes by Using State Space Approach
,”
ASME J. Mech. Des.
1050-0472,
124
(
3
), pp.
408
418
.
15.
Hu
,
S. J.
,
Webbink
,
R.
,
Lee
,
J.
, and
Long
,
Y.
, 2003, “
Robustness Evaluation for Compliant Assembly Systems
,”
ASME J. Mech. Des.
1050-0472,
125
(
2
), pp.
262
267
.
16.
Caro
,
S.
,
Bennis
,
F.
, and
Wenger
,
P.
, 2005, “
Tolerance Synthesis of Mechanisms: A Robust Design Approach
,”
ASME J. Mech. Des.
1050-0472,
127
(
1
), pp.
86
94
.
17.
Lee
,
B.
, and
Saitou
,
K.
, 2006, “
Three-Dimensional Assembly Synthesis for Robust Dimensional Integrity Based on Screw Theory
,”
ASME J. Mech. Des.
1050-0472,
128
(
1
), pp.
243
251
.
18.
Lindvist
,
L.
, and
Söderberg
,
R.
, 2003, “
Computer Aided Tolerance Chain and Sensitvity Analysis
,”
J. Eng. Design
0954-4828,
14
(
1
), pp.
17
39
.
19.
Ceglarek
,
D.
, and
Shi
,
J.
, 1998, “
Variation Design Evaluation of Sheet Metal Joints for Dimensional Integrity
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
, pp.
452
460
.
20.
Wang
,
M. Y.
, 1999, “
An Optimum Design Approach to Fixture Synthesis for 3D Workpieces
,”
Trans. North Am. Manuf. Res. Inst. SME
1047-3025,
XXVII
, pp.
209
214
.
21.
Liu
,
S. C.
,
Hu
,
S. J.
, and
Woo
,
T. C.
, 1996, “
Tolerance Analysis for Sheet Metal Assemblies
,”
ASME J. Mech. Des.
1050-0472,
118
, pp.
62
67
.
22.
Liu
,
S. C.
, and
Hu
,
S. J.
, 1997, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
, pp.
368
374
.
23.
Camelio
,
J.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
, 2003, “
Modeling Variation Propagation of Multi-Station Assembly Systems With Compliant Parts
,”
ASME J. Mech. Des.
1050-0472,
125
(
4
), pp.
673
681
.
24.
Hu
,
S. J.
, and
Wu
,
S. M.
, 1992, “
Identifying Root Causes of Variation in Automobile Body Assembly Using Principal Component Analysis
,”
Trans. North Am. Manuf. Res. Inst. SME
1047-3025,
20
, pp.
311
316
.
25.
Ceglarek
,
D.
, and
Shi
,
J.
, 1996, “
Fixture Failure Diagnosis for Autobody Assembly Using Pattern Recognition
,”
ASME J. Eng. Ind.
0022-0817,
118
, pp.
55
66
.
26.
Camelio
,
J.
, and
Hu
,
S. J.
, 2004, “
Multiple Fault Diagnosis for Sheet Metal Fixtures Using Designated Component Analysis
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
1
), pp.
91
97
.
27.
Camelio
,
J.
,
Hu
,
S. J.
, and
Marin
,
P. S.
, 2004, “
Compliant Assembly Variation Analysis Using Geometric Covariance
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
2
), pp.
355
360
.
You do not currently have access to this content.