This paper presents parallel kinematic XY flexure mechanism designs based on systematic constraint patterns that allow large ranges of motion without causing over-constraint or significant error motions. Key performance characteristics of XY mechanisms such as mobility, cross-axis coupling, parasitic errors, actuator isolation, drive stiffness, lost motion, and geometric sensitivity, are discussed. The standard double parallelogram flexure module is used as a constraint building-block and its nonlinear force-displacement characteristics are employed in analytically predicting the performance characteristics of two proposed XY flexure mechanism designs. Fundamental performance tradeoffs, including those resulting from the nonlinear load-stiffening and elastokinematic effects, in flexure mechanisms are highlighted. Comparisons between closed-form linear and nonlinear analyses are presented to emphasize the inadequacy of the former. It is shown that geometric symmetry in the constraint arrangement relaxes some of the design tradeoffs, resulting in improved performance. The nonlinear analytical predictions are validated by means of computational finite element analysis and experimental measurements.

1.
Ryu
,
J. W.
,
Gweon
,
D.-G.
, and
Moon
,
K. S.
, 1997, “
Optimal Design of a Flexure Hinge Based X-Y-θ Wafer Stage
,”
Precis. Eng.
0141-6359,
21
(
1
), pp.
18
28
.
2.
Smith
,
A. R.
,
Gwo
,
S.
, and
Shih
,
C. K.
, 1994, “
A New High Resolution Two-Dimensional Micropositioning Device for Scanning Probe Microscopy
,”
Rev. Sci. Instrum.
0034-6748,
64
(
10
), pp.
3216
3219
.
3.
Eom
,
T. B.
, and
Kim
,
J. Y.
, 2001, “
Long Range Stage for the Metrological Atomic Force Microscope
,”
Proceedings ASPE 2001 Annual Meeting
,
pp.
156
159
.
4.
Gorman
,
J. J.
, and
Dagalakis
,
N. G.
, 2003, “
Force Control of Linear Motor Stages for Microassembly
,” ASME International Mechanical Engineering Conference and Exposition, Washington, DC, ASME Paper No. IMECE2003–42079.
5.
Vettiger
,
P.
,
Despont
,
M.
,
Drechsler
,
U.
,
Durig
,
U.
,
Haberle
,
W.
,
Lutwyche
,
M. I.
,
Rothuizen
,
H. E.
,
Stutz
,
R.
,
Widmer
,
R.
, and
Binnig
,
G. K.
, 2000, “
The Millipede—More Than One Thousand Tips for Future AFM Data Storage
,”
IBM J. Res. Dev.
0018-8646,
44
(
3
), pp.
323
340
.
6.
ADXL Accelerometers and ADXRS Gyroscopes, www.analogdevices.comwww.analogdevices.com
7.
Agilent Nanostepper J7220, www.labs.agilent.comwww.labs.agilent.com
9.
Chang
,
S. H.
,
Tseng
,
C. K.
, and
Chien
,
H. C.
, 1999, “
An Ultra-Precision XYθZ Piezo-Micropositioner Part I: Design and Analysis
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
46
(
4
), pp.
897
905
.
10.
Chen
,
K. S.
,
Trumper
,
D. L.
, and
Smith
,
S. T.
, 2002, “
Design and Control for an Electromagnetically Driven X-Y-θ Stage
,”
J. of Precision Eng. and Nanotechnol.
,
26
, pp.
355
369
.
11.
Awtar
,
S.
, 2004, “
Analysis and Synthesis of Planer Kinematic XY Mechanisms
,” Sc.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, http://web.mit.edu/shorya/wwwhttp://web.mit.edu/shorya/www
12.
Awtar
,
S.
, and
Slocum
,
A. H.
, 2005, “
Closed-Form Nonlinear Analysis of Beam-Based Flexure Modules
,”
Proceedings ASME IDETC/CIE 2005
, Long Beach, CA,
ASME
, New York, ASME Paper No. 85440.
13.
Ananthasuresh
,
G. K.
,
Kota
,
S.
, and
Gianchandani
,
Y.
, 1994, “
A Methodical Approach to Design of Compliant Micromechanisms
,” Solid State Sensor and Actuator Workshop, Hilton Head Island, SC, pp.
189
192
.
14.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kickuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
1050-0472,
119
, pp.
238
245
.
15.
Blanding
,
D. K.
, 1999,
Exact Constraint: Machine Design Using Kinematic Principles
,
ASME
, New York.
16.
Awtar
,
S.
, and
Slocum
,
A. H.
, 2004, “
Apparatus Having Motion With Pre-Determined Degree of Freedom
,” U.S. Patent 6,688,183 B2.
17.
Bisshopp
,
K. E.
, and
Drucker
,
D. C.
, 1945, “
Large Deflection of Cantilever Beams
,”
Q. Appl. Math.
0033-569X,
3
(
3
), pp.
272
275
.
18.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
, New York.
19.
Plainevaux
,
J. E.
, 1956, “
Etude des deformations d’une lame de suspension elastique
,”
Nuovo Cimento
0029-6341,
4
, pp.
922
928
.
20.
Legtenberg
,
R.
,
Groeneveld
,
A. W.
, and
Elwenspoek
,
M.
, 1996, “
Comb-Drive Actuators for Large Displacements
,”
J. Micromech. Microeng.
0960-1317,
6
, pp.
320
329
.
21.
Saggere
,
L.
,
Kota
,
S.
, and
Crary
,
S. B.
, 1994, “
A New Design for Suspension of Linear Microactuators
, DSC-Vol. 55-2,
Dynamic Systems and Control
, Vol. 2,
Proceedings 1994 International Mechanical Engineering Congress and Exposition
, Chicago, IL, Nov. 6–11, pp.
671
675
.
You do not currently have access to this content.