This paper presents a new manipulation theory for controlling compliant motions of a robotic manipulator. In previous closed loop control methods, both direct kinematics and inverse kinematics of a manipulator must be resolved to convert feedback force and position data from Cartesian space to joint space. However, in many cases, the solution of direct kinematics in a parallel manipulator or the solution of inverse kinematics in a serial manipulator is not easily available. In this study, the force and position data are packed into one set of “motion feedback,” by replacing the force errors with virtual motion quantities, or one set of “force feedback,” by replacing motion errors with virtual force quantities. The joint torques are adjusted based on this combined feedback package. Since only Jacobian of direct kinematics or Jacobian of inverse kinematics is used, the computational complexity is reduced significantly, and the control scheme is more stable at or near singular manipulator configurations. Furthermore, the complexities and oddities associated with hybrid control, such as nonuniformity of the space matrix and incompatibility of simultaneous position and force control in the same direction are circumvented. The applications of this theory are demonstrated in simulation experiments with both serial and parallel manipulators.

1.
Paul
,
R.
, and
Shimano
,
B.
, 1976, “
Compliance and Control
,”
Proceedings Joint Automatic Control Conference
, San Francisco, CA, pp.
694
699
.
2.
Mason
,
M. T.
, 1981, “
Compliance and Force Control for Computer-Controlled Manipulators
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
SMC-11
(
6
), pp.
418
432
.
3.
Raibert
,
M. H.
, and
Craig
,
J. J.
, 1981, “
Hybrid Position/Force Control of Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
102
, pp.
126
133
.
4.
Zhang
,
H.
, and
Paul
,
R. P.
, 1985, “
Hybrid Control of Robotic Manipulators
,”
Proceedings International Conference on Robotics and Automation
, March,
IEEE Computer Society
,
Sant Louis, MO
, pp.
602
607
.
5.
Liu
,
J.
, and
Chen
,
S.
, 1998, “
Robust Hybrid Control of Constrainted Robot Manipulators via Decomposed Equations
,”
J. Intell. Robotic Syst.
0921-0296,
23
, pp.
45
70
.
6.
De Schutter
,
J.
, and
Van Brussel
,
J.
, 1988, “
Compliant Robot Motion II. A Control Approach Based on External Control Loops
,”
Int. J. Robot. Res.
0278-3649,
7
(
4
), pp.
18
33
.
7.
Duffy
,
J.
, 1990, “
The Fallacy of Modern Hybrid Control Theory That is Based on ‘Orthogonal Complements’ of Twist and Wrench Spaces
,”
J. Rob. Syst.
0741-2223,
7
, pp.
139
144
.
8.
Zhang
,
M. H.
, 1989, “
Kinematic Stability of Robot Manipulators under Force Control
,”
Proceedings International Conference on Robotics and Automation
, May,
IEEE Robotics and Automation Society
,
Scottsdale, AZ
, pp.
80
85
.
9.
Fisher
,
W. D.
, and
Mujtaba
,
S. M.
, 1991, “
Hybrid Position/Force Control: A Correct Formulation
,”
Measurement and Manufacturing Systems Laboratory, Hewlett-Packard Company
, Lab Report No. HPL-91-140.
10.
Khatib
,
O.
,
Featherstone
,
R.
, and
Thiebaut
,
S.
, 1999, “
A General Contact Model for Dynamically-Decoupled Force/Motion Control
,”
Proceedings of 1999 IEEE International Conference on Robotics and Automation
, Detroit, MI, May 10-15, Paper No. 0-7803-5180-0-5/99.
11.
Lipkin
,
H.
, and
Duffy
,
J.
, 1988, “
Hybrid Twist and Wrench Control for a Robotic Manipulator
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
110
, pp.
138
144
.
12.
Griffis
,
M.
, and
Duffy
,
J.
, 1991, “
Kinestatic Control Theory: A Novel Theory for Simultaneously Regulating Force and Displacement
,”
ASME J. Mech. Des.
0161-8458,
113
, pp.
508
515
.
13.
Hogan
,
N.
, 1985, “
Impedance Control:An Approach to Manipulation: Part I-Theory
,”
J. Dyn. Syst., Meas., Control
0022-0434,
107
, pp.
1
7
.
14.
Hogan
,
N.
, 1985, “
Impedance Control: An Approach to Manipulation: Part II-Implementation
,”
J. Dyn. Syst., Meas., Control
0022-0434,
107
, pp.
8
16
.
15.
Hogan
,
N.
, 1985, “
Impedance Control: An Approach to Manipulation: Part III-Application
,”
J. Dyn. Syst., Meas., Control
0022-0434,
107
, pp.
17
24
.
16.
Maples
,
J.
, and
Becker
,
J.
, 1986, “
Experiments in Force Control of Robotic Manipulators
,”
Proceedings of IEEE International Conference on Robotics and Automation
, pp.
695
702
.
17.
Kazerooni
,
H.
, 1987, “
Robust, Non-Linear Impedance Control for Robot Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Raleigh, NC, March 31–April 3, pp.
741
750
.
18.
Wen
,
J. T.
, and
Murphy
,
S.
, 1991, “
Stability Analysis of Position and Force Control for Robot Arms
,”
IEEE Trans. Autom. Control
0018-9286,
36
, pp.
365
371
.
19.
Waibel
,
B.
, and
Kazerooni
,
E.
, 1991, “
Theory and Experiment on the Stability of Robot Compliance Control
,”
IEEE Trans. Rob. Autom.
1042-296X,
7
, pp.
95
104
.
20.
Walker
,
I. D.
, 1990, “
The Use of Kinematic Redundancy in Reducing Impact and Contact Effects in Manipulation
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Cincinnati, OH, May 13–18, pp.
434
439
.
21.
Kazerounian
,
K.
, and
Gupta
,
K. C.
, 1986, “
A Target Tracking Manipulation Theory for Robots
,” IASTED
Int. J. Rob. Autom.
0826-8185,
1
(
3
), p.
1986
.
22.
Westlake
,
J. R.
, 1968,
A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
,
Wiley Inc.
,
New York
.
23.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 1992,
Numerical Recipes in C
,
Cambridge University Press
,
Cambridge, U.K.
.
24.
Craig
,
J. J.
, 1989,
Introduction to Robotics: Mechanics and Control
, 2nd ed.,
Addison-Wesley
,
Reading, MA
.
25.
Pimsarn
,
M.
, and
Kazerounian
,
K.
, 2003, “
Pseudo-Interference Stiffness Estimation, A Highly Efficient Numerical Method for Force Evaluation in Contact Problems
,”
Eng. Comput.
0177-0667,
19
, pp.
85
91
.
26.
Stewart
,
D.
, 1965, “
A Platform with Six Degree of Freedom
,”
Proc. Inst. Mech. Eng.
0020-3483,
180
, pp.
371
386
.
27.
Tsai
,
L. W.
, 1999,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
Wiley
,
New York
.
28.
Kohli
,
D.
,
Lee
,
S. H.
,
Tsai
,
K. Y.
, and
Sandor
,
G. N.
, 1988, “
Manipulator Configurations Based on Rotary-Linear (R-L) Actuators and Their Direct and Inverse Kinematics
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
110
, pp.
397
404
.
29.
Griffis
,
M.
, and
Duffy
,
J.
, 1989, “
A Forward Displacement Analysis of a Class of Stewart Platforms
,”
J. Rob. Syst.
0741-2223,
6
(
6
), pp.
703
720
.
30.
Innocenti
,
C.
, and
Parenti-Castelli
,
V.
, 1990, “
Direct Position Analysis of the Stewart Platform Mechanism
,”
Mech. Mach. Theory
0094-114X,
25
(
6
), pp.
611
621
.
31.
Innocenti
,
C.
, and
Parenti-Castelli
,
V.
, 1993, “
Closed-Form Direct Position Analysis of a 5-5 Parallel Mechanism
,”
J. Mech. Des.
1050-0472,
115
, pp.
515
521
.
32.
Chen
,
N. X.
, and
Sing
,
S. M.
, 1994, “
Direct Position Analysis of the 4–6 Stewart Platform
,”
J. Mech. Des.
1050-0472,
116
, pp.
61
66
.
33.
Zhang
,
C. D.
, and
Song
,
S. M.
, 1992, “
Forward Kinematics of a Class of Parallel (Stewart) Platforms with Closed Form Solutions
,”
J. Rob. Syst.
0741-2223,
9
(
1
), pp.
93
112
.
34.
Zhang
,
C. D.
, and
Song
,
S. M.
, 1994, “
Forward Position Analysis of Nearly General Stewart Platforms
,”
J. Mech. Des.
1050-0472,
116
, pp.
54
60
.
35.
Lin
,
W.
,
Grane
,
C. D.
, and
Duffy
,
J.
, 1994, “
Closed Form Forward Displacement Analysis of the 4–5 in Parallel Platforms
,”
ASME J. Mech. Des.
0161-8458,
116
, pp.
47
53
.
36.
Nanua
,
P.
,
Waldron
,
K. J.
, and
Murphy
,
V.
, 1990, “
Direct Kinematic Solution of a Stewart Platform
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
4
), pp.
438
444
.
37.
Lee
,
J. K.
, and
Song
,
S. M.
, 1990, “
A Study of Instantaneous Kinematics of Walking Machines
,”
J. Rob. Syst.
0741-2223,
9
(
1
), pp.
93
112
.
38.
Husty
,
M. L.
, 1996, “
An Algorithm for Solving the Direct Kinematics of General Stewart-Gough Platforms
,”
Mech. Mach. Theory
0094-114X,
31
(
4
), pp.
365
380
.
39.
Mu
,
Z.
, and
Kazerounian
,
K.
, 2002, “
A Real Parameter Continuation Method for Complete Solution of Forward Position Analysis of the General Stewart
,”
ASME J. Mech. Des.
0161-8458,
124
(
2
), pp.
236
244
, June.
40.
Akcali
,
I. D.
, and
Mutlu
,
H.
, 2006, “
A Novel Approach in the Direct Kinematics of Stewart Platform Mechanisms with Planar Platforms
,”
ASME J. Mech. Des.
0161-8458,
128
(
1
), pp.
252
263
.
You do not currently have access to this content.