Abstract

An efficient approach for series system reliability-based design optimization (RBDO) is presented. The key idea is to apportion optimally the system reliability among the failure modes by considering the target values of the failure probabilities of the modes as design variables. Critical failure modes that contribute the most to the overall system reliability are identified. This paper proposes a computationally efficient, system RBDO approach using a single-loop method where the searches for the optimum design and for the most probable failure points proceed simultaneously. Specifically, in each iteration, the optimizer uses approximated most probable failure points from the previous iteration to search for the optimum. A second-order Ditlevsen upper bound is used for estimating the system failure probability considering the joint failure probabilities of failure modes. Also, an easy to implement active strategy set is employed to improve algorithmic stability. The approach is demonstrated on two design examples involving a beam and an internal combustion engine.

References

1.
Frangopol
,
D. M.
, and
Maute
,
C.
, 2004, “
Reliability-Based Optimization of Civil and Aerospace Structural Systems
,”
Engineering Design Reliability Handbook
,
CRC
,
Boca Raton, FL
, Chap. 24.
2.
Madsen
,
H. O.
,
Krenk
,
S.
, and
Lind
,
N. C.
, 1986,
Methods of Structural Safety
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
3.
Melchers
,
R. E.
, 2001,
Structural Reliability Analysis and Prediction
,
Wiley
,
New York
.
4.
Moses
,
F.
, 1995, “
Probabilistic Analysis of Structural Systems
,”
Probabilistic Structural Mechanics Handbook: Theory and Industrial Applications
,
Raj Sundararajan
,
C.
, ed.,
Chapman and Hall
,
London
, pp.
166
187
.
5.
Acar
,
E.
, and
Haftka
,
R. T.
, 2006, “
Reliability Based Aircraft Structural Design Pays Even with Limited Statistical Data
,”
47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Newport, RI
, May 1–4, Paper No. AIAA-2006-2059.
6.
Wu
,
Y.-T.
,
Shin
,
Y.
,
Sues
,
R. H.
, and
Cesare
,
M. A.
, 2006, “
Probabilistic Function Evaluation System (ProFES) for Reliability-Based Design
,”
Struct. Safety
0167-4730,
28
, pp.
164
195
.
7.
Sues
,
R. H.
, and
Cesare
,
M. A.
, 2005, “
System Reliability and Sensitivity Factors via the MPPSS Method
,”
Probab. Eng. Mech.
0266-8920,
20
, pp.
148
157
.
8.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
1050-0472,
126
(
2
), pp.
225
233
.
9.
Royset
,
J. O.
,
Der Kiureghian
,
A.
, and
Polak
,
E.
, 2001, “
Reliability-Based Optimal Design of Series Structural Systems
,”
J. Eng. Mech.
0733-9399,
127
(
6
), pp.
607
614
.
10.
Wu
,
Y.-T.
,
Shin
,
Y.
,
Sues
,
R.
, and
Cesare
,
M.
, 2001, “
Safety-Factor Based Approach for Probabilistic-Based Design Optimization
,”
42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Seattle, WA
, Apr. 16–19.
11.
Chan
,
K.-Y.
,
Skerlos
,
S. J.
, and
Papalambros.
,
P.
, 2007, “
An Adaptive Sequential Linear Programming Algorithm for Optimal Design Problems With Probabilistic Constraints
,”
ASME J. Mech. Des.
1050-0472,
129
, pp.
140
149
.
12.
Thanedar
,
P. B.
, and
Kodiyalam
,
S.
, 1992, “
Structural Optimization Using Probabilistic Constraints
,”
Struct. Optim.
0934-4373,
4
, pp.
236
240
.
13.
Chen
,
X.
,
Hasselman
,
T. K.
, and
Neill
,
D. J.
, 1997, “
Reliability Based Structural Design Optimization for Practical Applications
,”
Proceedings of the 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Kissimmee, FL
, Apr. 7–10.
14.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Tu
,
J.
, 2004, “
A Single-Loop Method for Reliability-Based Design Optimization
,”
Proceedings of ASME Design Engineering Technical Conferences
,
Salt Lake City, UT
, Sept. 28–Oct. 2, Paper No. DETC2004#x2215 DAC-57255;
International Journal of Product Development
, Inderscience Enterprises Limited, Great Britain, in press.
15.
Kuschel
,
N.
, and
Rackwitz
,
R.
, 2000, “
Optimal Design Under Time-Variant Reliability Constraints
,”
Struct. Safety
0167-4730,
22
(
2
), pp.
113
128
.
16.
Streicher
,
H.
, and
Rackwitz
,
R.
, 2004, “
Time-Variant Reliability-Oriented Structural Optimization and a Renewal Model for Life-Cycle Costing
,”
Probab. Eng. Mech.
0266-8920,
19
(
1–2
), pp.
171
183
.
17.
Agarwal
,
H.
,
Renaud
,
J.
,
Lee
,
J.
, and
Watson
,
L.
, 2004, “
A Unilevel Method for Reliability Based Design Optimization
,”
45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Palm Springs, CA
, Apr. 19–22.
18.
Ba-abbad
,
M.
,
Nikolaidis
,
E.
, and
Kapania
,
R.
, 2006, “
A New Approach for System Reliability-Based Design Optimization
,”
AIAA J.
0001-1452,
44
(
5
), pp.
1087
1096
.
19.
Ditlevsen
,
O.
, 1979, “
Narrow Reliability Bounds for Structural Systems
,”
J. Struct. Mech.
0360-1218,
3
, pp.
453
472
.
20.
Papalambros
,
P. Y.
, and
Wilde
,
D. J.
, 2000,
Principles of Optimal Design: Modeling and Computation
, 2nd Ed.,
Cambridge University Press
,
New York
.
21.
Haldar
,
A.
, and
Mahadevan
,
S.
, 2000,
Probability, Reliability and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
22.
Lee
,
J. O.
,
Yang
,
Y. O.
, and
Ruy
,
W. S.
, 2002, “
A Comparative Study on Reliability Index and Target Performance Based Probabilistic Structural Design Optimization
,”
Comput. Struct.
0045-7949,
80
, pp.
257
269
.
23.
McAllister
,
C. D.
, and
Simpson
,
T. W.
, 2003, “
Multidisciplinary Robust Design Optimization of an Internal Combustion Engine
,”
ASME J. Mech. Des.
1050-0472,
125
(
1
), pp.
124
130
.
You do not currently have access to this content.