Based on the principle of dynamic equivalence, a new dynamic model of compliant mechanisms is developed using the pseudo-rigid-body model. The dynamic equation of general planar compliant mechanisms is derived. The natural frequency of a compliant mechanism is obtained in the example of a planar compliant parallel-guiding mechanism. The numerical results show the effectiveness and advantage of the proposed method compared with the methods of FEA and flexible mechanisms.
Issue Section:
Technical Papers
1.
Howell
, L. L.
, 2001, Compliant Mechanisms
, Wiley
, New York.2.
Howell
, L. L.
, and Midha
, A.
, 1994, “A method for the design of compliant mechanism with small-length flexural pivots
,” ASME J. Mech. Des.
0161-8458, 116
, pp. 280
–289
.3.
Kota
, S.
, Ananthasuresh
, G. K.
, Crary
, G. S.
, and Wise
, K. D.
, 1994, “Design and fabrication of Microelectromechanical systems
,” ASME J. Mech. Des.
0161-8458, 116
, pp. 1081
–1088
.4.
Ananthasuresh
, G. K.
, and Kota
, S.
, 1995, “Designing compliant mechanisms
,” Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501, 117
, pp. 93
–96
.5.
Howell
, L. L.
, and Midha
, A.
, 1996, “Evaluation of equivalent spring stiffness for use in a pseudo-rigid-body model of large deflection compliant mechanisms
,” ASME J. Mech. Des.
0161-8458, 118
, pp. 126
–131
.6.
Murphy
, M. D.
, Midha
, A.
, and Howell
, L. L.
, 1996, “The topological synthesis of compliant mechanisms
,” Mech. Mach. Theory
0094-114X, 31
, pp. 185
–199
.7.
Howell
, L. L.
, and Midha
, A.
, 1996, “A loop-closure theory for the analysis and synthesis of compliant mechanisms
,” ASME J. Mech. Des.
0161-8458, 118
, pp. 121
–125
.8.
Frecker
, M. I.
, Ananthasuresh
, G. K.
, Nishiwaki
, S.
, and Kota
, S.
, 1997, “Topological synthesis of compliant mechanisms using multi-criterion optimization
,” ASME J. Mech. Des.
0161-8458, 119
, pp. 238
–245
.9.
Saxena
, A.
, and Ananthasuresh
, G. K.
, 2000, “On an optimal property of compliant topologies
,” Struct. Multidiscip. Optim.
1615-147X, 19
, pp. 36
–49
.10.
Mankame
, N. D.
, and Ananthasuresh
, G. K.
, 2004, “A Novel Compliant Mechanism for Converting Reciprocating Translation into Enclosing Curved Paths
,” J. Mech. Des.
1050-0472, 126
, pp. 667
–672
.11.
McInroy
, J. E.
, and Hamaan
, J. C.
, 2000, “Design and control of flexure jointed hexapods
,” IEEE Trans. Rob. Autom.
1042-296X, 16
, pp. 372
–381
.12.
Parkinson
, B. M.
, Jenson
, B. D.
, and Roach
, G. M.
, 2000, “Optimization-based design of a fully-compliant bistable micromechanism
,” Proceedings of 2000 ASME Design Engineering Technical Conferences
, DETC2000∕MECH-14119.13.
Baker
, M. S.
, and Howell
, L. L.
, 2002, “On-Chip Actuation of an In-Plane Compliant Bistable Micro-Mechanism
,” J. Microelectromech. Syst.
1057-7157, 11
, pp. 566
–573
.14.
Masters
, N. D.
, and Howell
, L. L.
, 2003, “A Self-Retracting Fully-Compliant Bistable Micromechanism
,” J. Microelectromech. Syst.
1057-7157, 12
, pp. 273
–280
.15.
Lyon
, S. M.
, Evans
, M. S.
, Erickson
, P. A.
, and Howell
, L. L.
, 1997, “Dynamic response of compliant mechanisms using the pseudo-rigid-body model
,” Proceedings of 1997 ASME Design Engineering Technical Conferences
, DETC97∕VIB-4177.16.
Lyon
, S. M.
, Evans
, M. S.
, Erickson
, P. A.
, and Howell
, L. L.
, 1999, “Prediction of the first modal frequency of compliant mechanism using the pseudo-rigid-body model
,” ASME J. Mech. Des.
0161-8458, 121
, pp. 309
–313
.17.
Boyle
, C.
, Howell
, L. L.
, Magleby
, S. P.
, and Evans
, M. S.
, 2003, “Dynamic modeling of compliant constant-force compression mechanisms
,” Mech. Mach. Theory
0094-114X, 38
, pp. 1469
–1487
.18.
Li
, Z.
, and Kota
, S.
, 2002, “Dynamic analysis of compliant mechanisms
,” Proceedings of ASME 2002 Design Engineering Technical Conferences
, DETC2002∕MECH-34205.19.
Erdman
, A. G.
, and Sandor
, G. N.
, 1997, Mechanism Design: Analysis and Synthesis, Vol. 1
, 3rd ed., Prentice Hall
, Upper Sadler River, NJ.20.
Midha
, A.
, Erdman
, A. G.
, and Forhrib
, D. A.
, 1978, “Finite element approach to mathematical modeling of high-speed elastic linkages
,” Mech. Mach. Theory
0094-114X, 13
, pp. 603
–618
.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.