A suitable formulation and the implementing algorithms for involute and octoidal bevel-gear generation are proposed in this paper. In particular, the exact spherical involute tooth profile of bevel gears and their crown rack is obtained through the pure-rolling motion of a great circle of the fundamental sphere on the base cone. Moreover, the tooth flank surface of octoidal bevel gears is obtained as the envelope of the tooth flat flank of the octoidal crown rack during the pure-rolling motion of its flat pitch (surface) on the pitch cone. The proposed algorithms have been implemented in MATLAB; several examples are included to illustrate their applicability.

1.
Litvin
,
F. L.
, 1994,
Gear Geometry and Applied Theory
,
Prentice–Hall
, Englewood Cliffs, NJ.
2.
AGMA 90FTM15
, 1990, “
Optimal Design of Straight Bevel Gears
,”
American Gears Manufacturers Association
, Alexandria, VA.
3.
AGMA 95FTM12
, 1995, “
Flank Modifications in Bevel Gears Using a Universal Motion Concept
,”
American Gears Manufacturers Association
, Alexandria, VA.
4.
ISO/R 677
, 1976, “
Straight Bevel Gears for General Engineering and Heavy Engineering-Basic Rack
,”
International Organization for Standardization
, Geneva.
5.
Huston
,
R. L.
, and
Coy
,
J. J.
, 1981, “
Ideal Spiral Bevel Gears-A New Approach to Surface Geometry
,”
ASME J. Mech. Des.
1050-0472,
103
(
1
), pp.
127
133
.
6.
Huston
,
R. L.
, and
Coy
,
J. J.
, 1982, “
Surface Geometry of Circular Cut Spiral Bevel Gears
,”
ASME J. Mech. Des.
1050-0472,
104
(
3
), pp.
743
748
.
7.
Tsai
,
Y. C.
, and
Chin
,
P. C.
, 1987, “
Surface Geometry of Straight and Spiral Bevel Gears
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666
109
(
4
), pp.
443
449
.
8.
Sung
,
L. M.
, and
Tsai
,
Y. C.
, 1997, “
A Study on the Mathematical Models and Contact Ratios of Extended Cycloid and Cycloid Bevel Gear Sets
,”
Mech. Mach. Theory
0094-114X,
32
(
1
), pp.
39
50
.
9.
Al-Daccak
,
M. J.
,
Angeles
,
J.
, and
González-Palacios
,
M. A.
, 1994, “
The Modeling of Bevel Gears Using the Exact Spherical Involute
,”
ASME J. Mech. Des.
1050-0472
116
(
2
), pp.
364
368
.
10.
Gonzalez-Palacios
,
M. A.
, 1995, “
An Algorithm for the Synthesis of Bevel Gears
,”
Ninth IFToMM World Congress on the Theory of Machines and Mechanisms, Milan
, pp.
570
574
, Vol.
1
.
11.
Shunmugam
,
M. S.
,
Subba Rao
,
B.
, and
Jayaprakash
,
V.
, 1998, “
Establishing Gear Tooth Surface Geometry and Normal Deviation, Part II-Bevel Gears
,”
Mech. Mach. Theory
0094-114X,
33
(
5
), pp.
525
534
.
12.
Litvin
,
F. L.
,
Wang
,
A. G.
, and
Handschuh
,
R. F.
, 1998, “
Computerized Generation and Simulation of Meshing and Contact of Spiral Bevel Gears with Improved Geometry
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
158
(
1-2
), pp.
35
64
.
13.
Koć
,
A.
, 1993, “
Geometric Foundations for Surface-Generating Machining: Tool Calculations and Computer Generation of the Surface
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
8
(
2
), pp.
78
84
.
14.
Koć
,
A.
, 1999, “
Theoretically Accurate Equations of Bevel Gear Tooth Flanks
”,
Fourth World Congress on Gearing and Power Transmission, Paris
, pp.
677
682
, Vol.
1
.
15.
Ichino
,
K.
,
Tamura
,
H.
, and
Kawasaki
,
K.
, 1997, “
Method for Cutting Straight Bevel Gears Using Quasi-Complementary Crown Gears
,”
Trans. Jpn. Soc. Mech. Eng., Ser. C
0387-5024,
63
(
606
), pp.
579
584
.
16.
García-Masia
,
C.
,
Fuentes
,
A.
, and
Ruipérez
,
A.
, 1999, “
Computer Modeling of 3D Basic Rack Generated Bevel Gears
,”
Fourth World Congress on Gearing and Power Transmission, Paris
, pp.
667
675
, Vol.
1
.
17.
Brauer
,
J.
, 2002, “
Analytical Geometry of Straight Conical Involute Gears
,”
Mech. Mach. Theory
0094-114X,
37
(
1
), pp.
127
141
.
18.
Lelkes
,
M.
,
Márialigeti
,
J.
, and
Play
,
D.
, 2002, “
Numerical Determination of Cutting Parameters for the Control of Klingelnberg Spiral Bevel Gear Geometry
,”
ASME J. Mech. Des.
1050-0472,
124
(
4
), pp.
761
771
.
19.
Dooner
,
D. B.
, and
Seireg
,
A. A.
, 1999, “
An Interactive Approach to the Integrated Design and Manufacture of Gear Pairs
,”
Fourth World Congress on Gearing and Power Transmission, Paris
, pp.
317
322
, Vol.
1
.
20.
Wu
,
J. L.
,
Liu
,
C. C.
,
Tsay
,
C. B.
, and
Nagata
,
S.
, 2003, “
Mathematical Model and Surface Deviation of Helipoid Gears Cut by Shaper Cutters
,”
ASME J. Mech. Des.
1050-0472,
125
(
2
), pp.
351
355
.
21.
Zhang
,
Y.
, and
Xu
,
H.
, 2003, “
Pitch Cone Design and Avoidance of Contact Envelope and Tooth Undercutting for Conical Worm Gear Drives
,”
ASME J. Mech. Des.
1050-0472,
125
(
1
), pp.
169
177
.
22.
Figliolini
,
G.
, and
Angeles
,
J.
, 2003, “
The Synthesis of Elliptical Gears Generated by Shaper-Cutters
,”
ASME J. Mech. Des.
1050-0472,
125
(
4
), pp.
793
801
.
23.
Brink
,
R. W.
, 1942,
Spherical Trigonometry
,
Appleton-Century-Crofts
, New York, Chap. II, pp.
8
11
.
24.
Ghigliazza
,
R.
,
Lucifredi
,
A.
, and
Michelini
,
R.
, 1974,
Meccanica Applicata alle Macchine
,
Microlito
, Genoa, Vol.
2
, Chap. 3, pp.
22
25
.
You do not currently have access to this content.