This paper introduces a novel contact-aided compliant mechanism that uses intermittent contacts to convert a single translatory reciprocating input into two output curves, which intersect to enclose a two dimensional region. Contact interactions endow contact-aided compliant mechanisms with enhanced kinematic and kinetostatic capabilities. The mechanism described in this paper is designed to undergo large deformations repeatedly, without yielding by avoiding flexural joints and by using contacts to obtain the desired deformation. A single-material, joint-free and planar design makes the mechanism easy and economical to fabricate at the macro or micro scales. The design is validated experimentally by manufacturing and testing macro scale prototypes. Two potential applications that motivated this mechanism are also noted.

1.
Midha, A., 1993, Modern Kinematics-The Developments in the Last Forty Years, Chapter 9: “Elastic Mechanisms,” (A. G. Erdman, ed.), John Wiley and Sons Inc., NY.
2.
Ananthasuresh
,
G. K.
, and
Kota
,
S.
,
1995
, “
Designing Compliant Mechanisms
,”
ASME Mechanical Engineering
,
117
(
11
), pp.
93
96
.
3.
Edwards
,
B. T.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2001
, “
A Pseudo-Rigid Body Model for Initially-Curved Pinned-Pinned Segments Used in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
464
468
.
4.
Kimball
,
C.
, and
Tsai
,
L.-W.
,
2002
, “
Modeling of Flexural Beams Subjected to Arbitrary End Loads
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
223
235
.
5.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
2001
, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications
,”
ASME J. Mech. Des.
,
123
, pp.
1
10
.
6.
Xu
,
D.
, and
Ananthasuresh
,
G. K.
,
2003
, “
Freeform Skeletal Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
253
261
.
7.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
2003
, “
A Computational Approach to the Number Synthesis of Linkages
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
110
118
.
8.
Saggere
,
L.
, and
Kota
,
S.
,
2001
, “
Synthesis of Planar Compliant Four-bar Mechanisms for Compliant Segment Motion Generation
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
535
541
.
9.
Mankame, N. D., and Ananthasuresh, G. K., 2002, “Contact Aided Compliant Mechanisms: Concept and Preliminaries,” Proc. of the 2002 ASME Design Engineering Technical Conferences, Montreal, Canada, Paper number DETC2002/MECH-34211.
10.
Kota
,
S.
,
Ananthasuresh
,
G. K.
,
Crary
,
S.
, and
Wise
,
K. D.
,
1994
, “
Design and Fabrication of Microelectromechanical Systems
,”
ASME J. Mech. Des.
,
116
, pp.
1081
1088
.
11.
Garcia
,
E. J.
, and
Sniegowski
,
J. J.
,
1995
, “
Surface Micromachined Microengine
,”
Sens. Actuators, A
,
48
(
3
), pp.
203
214
.
12.
Tanner, D. M., Smith, N. F., Irwin, L. W., Eaton, W. P., Helgesen, K. S., Clement, J. J., Miller, W. M., Walraven, J. A., Peterson, K. A., Tangyunyong, P., Dugger, M. T., and Miller, S. L., 2000, “MEMS Reliability: Infrastructure, Test Structures, Experiments, and Failure Modes,” Sandia Report, SAND2000-0091.
13.
Eberwine, J., 2002, Private communication.
14.
Willingham
,
E.
,
2002
, “
Laser Microdissection Systems
,”
The Scientist
,
16
(
10
), pp.
42–
42–
.
15.
Fan, L.-S., Tai, Y.-C., and Muller, R. S., 1987, “Pin Joints, Gears, Springs, Cranks and Other Novel Micromechanical Structures,” Proc. of Transducers ’87, pp. 849–856.
16.
Mehregany
,
M.
,
Gabriel
,
K. J.
, and
Trimmer
,
W. S. N.
,
1988
, “
Integrated Fabrication of Polysilicon Mechanisms
,”
IEEE Trans. Electron Devices
,
35
(
6
), pp.
719
723
.
17.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
,
2003
, “
A Novel Formulation for the Design of Distributed Compliant Mechanisms
,”
Mechanics Based Design of Structures and Machines
,
31
(
2
), pp.
151
179
.
18.
Structural Dynamics Research Corporation, I-DEAS Master Series 5, mechanical CAE/CAD/CAM software, 1997.
19.
Abaqus Inc. Abaqus/Standard version 5.8, User’s Manual, 1998.
20.
Maier, C., and Calafut, T., 1998, Polypropylene, The Definitive User’s Guide and Databook, Plastics Design Library, Norwich, NY.
21.
Poly Hi Solidur Inc., 2003, “Tensile Creep Data for PROTEUS Homopolymer Polypropylene,” Private communication, February.
22.
Ferry, J. D., 1980, Viscoelastic Properties of Polymers, Third Edition, John Wiley and Sons, Inc.
23.
Poly Hi Solidur Inc., Technical information for PROTEUS natural homopolymer polypropylene. Fort Wayne, Indiana 46809.
24.
Parallax Inc., 2002, BASIC Stamp Version 2.0 User’s Manual., Rocklin, CA 95765.
You do not currently have access to this content.