In this paper, the dynamic behavior of a multi-mesh helical gear train has been studied. The gear train consists of three helical gears, with one of the gears in mesh with the other two. A three dimensional dynamic model which includes transverse, torsional, axial and rotational (rocking) motions of the flexibility mounted gears has been developed. Two different loading conditions have been identified. In case-I, the system is driven by the gear in the middle, and in case-II, the system is driven by one of the gears at either end of the gear train. The phase difference between the two gear meshes has been determined under each loading condition. The natural modes have been predicted, and their sensitivity to the helix angle and different loading conditions has been quantified. The forced response, which includes dynamic mesh and bearing forces, due to the static transmission error excitation has been obtained. Effects of loading conditions and asymmetric positioning on the response have also been explored.

This content is only available via PDF.
You do not currently have access to this content.