Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In this study, damage mechanisms and the piezo-resistance response of glass/carbon intralaminar hybrid composites are examined under blast loading conditions. Two-ply orientations are considered, namely a repeating ((G45C45)R) and an alternating ((G45C45)A) ± 45 deg glass/carbon layers, along with three boundary condition configurations: simply supported, partially fixed, and fully fixed are applied. A shock tube apparatus and the three-dimensional digital image correlation technique are utilized to investigate the interaction of shock waves with the composites and gather a comprehensive deformation field during the loading. A modified four-probe resistivity measurement method is implemented to comprehend the piezo-resistance response associated with damage evolution. The results underscore the substantial influence of boundary conditions on the blast mitigation capacity of the composites. Analysis following the experiments reveals that the damage to the specimens primarily involves the fracture of fibers accompanied by internal delamination. Thermal imaging of the tested composite specimens provides enhanced insight into the precise occurrences of internal fiber breakage and delamination. Composites of (G45C45)A type demonstrate an increased energy dissipation ranging from 18% to 33% compared to (G45C45)R composites, depending on the specific boundary conditions among the three types considered. Furthermore, the findings indicated a strong correlation between changes in piezo-resistance and the fracture of carbon fibers, coupled with the sustained deformation of the composites. Notably, (G45C45)A composites exhibited 100–300% higher change in piezo-resistance compared to (G45C45)R composites depending on the boundary condition configurations, indicative of the superior damage-sensing capabilities of the former.

References

1.
Safri
,
S. N. A.
,
Sultan
,
M. T. H.
,
Jawaid
,
M.
, and
Jayakrishna
,
K.
,
2018
, “
Impact Behaviour of Hybrid Composites for Structural Applications: A Review
,”
Compos. Part B
,
133
, pp.
112
121
.
2.
Özben
,
T.
,
2016
, “
Impact Behavior of Hybrid Composite Plates Dependent on Curing and Different Stacking Sequences
,”
Mater. Test.
,
58
(
5
), pp.
442
447
.
3.
Czél
,
G.
,
Jalalvand
,
M.
, and
Wisnom
,
M. R.
,
2016
, “
Design and Characterisation of Advanced Pseudo-ductile Unidirectional Thin-Ply Carbon/Epoxy–Glass/Epoxy Hybrid Composites
,”
Compos. Struct.
,
143
, pp.
362
370
.
4.
Kalantari
,
M.
,
Dong
,
C.
, and
Davies
,
I. J.
,
2016
, “
Multi-objective Robust Optimisation of Unidirectional Carbon/Glass Fibre Reinforced Hybrid Composites Under Flexural Loading
,”
Compos. Struct.
,
138
, pp.
264
275
.
5.
O’Donnell
,
J.
, and
Chalivendra
,
V.
,
2021
, “
Multi-functional Glass/Carbon Fibers Hybrid Inter/Intra Laminated Composites
,”
Compos. Part C: Open Access
,
4
, p.
100121
.
6.
Pires
,
M.
, and
Chalivendra
,
V.
,
2022
, “
In-Situ Damage Sensing in Intra-ply Glass/Carbon Laminate Composites Under Interlaminar Shear Loading
,”
J. Compos. Mater.
,
56
(
2
), pp.
213
222
.
7.
Meninno
,
C.
, and
Chalivendra
,
V.
,
2021
, “
Damage Detection in Intra-ply Glass/Carbon Laminated Composites Under Mode-I and Mode-II Fracture Loadings
,”
Compos. Part B
,
218
, p.
108924
.
8.
Fleck
,
N. A.
, and
Deshpande
,
V. S.
,
2004
, “
The Resistance of Clamped Sandwich Beams to Shock Loading
,”
ASME J. Appl. Mech.
,
71
(
3
), pp.
386
401
.
9.
Kumar
,
P.
, and
Shukla
,
A.
,
2011
, “
Dynamic Response of Glass Panels Subjected to Shock Loading
,”
J. Non-Cryst. Solids
,
357
(
24
), pp.
3917
3923
.
10.
Shukla
,
A.
, and
Dally
,
J. W.
,
2014
,
Experimental Solid Mechanics
,
College House Enterprises, LLC
,
Knoxville, TN
.
11.
Black
,
M.
,
Kishore
,
S.
,
LeBlanc
,
J.
,
Lockhart
,
P.
, and
Shukla
,
A.
,
2018
, “
Non-destructive Imaging and Residual Strength of Composite Materials After Exposure to Blast Loading
,”
J. Dyn. Behav. Mater.
,
4
(
3
), pp.
408
424
.
12.
Chaudhary
,
B.
,
Matos
,
H.
,
Das
,
S.
, and
Owens
,
J.
,
2023
, “
Multifunctional Carbon/Epoxy Composites With Power Transmission Capabilities
,”
Mater. Today Commun.
,
35
, p.
105665
.
13.
LeBlanc
,
J.
,
Shukla
,
A.
,
Rousseau
,
C.
, and
Bogdanovich
,
A.
,
2007
, “
Shock Loading of Three-Dimensional Woven Composite Materials
,”
Compos. Struct.
,
79
(
3
), pp.
344
355
.
14.
Tekalur
,
S. A.
,
Shukla
,
A.
, and
Shivakumar
,
K.
,
2008
, “
Blast Resistance of Polyurea Based Layered Composite Materials
,”
Compos. Struct.
,
84
(
3
), pp.
271
281
.
15.
Wanchoo
,
P.
,
Chaudhary
,
B.
,
Li
,
H.-W.-X.
,
Matos
,
H.
, and
Shukla
,
A.
,
2023
, “
Blast Failure and Energy Analysis of Rubber-Modified Carbon-Fiber Vinyl-Ester Composite Laminates
,”
Mech. Mater.
,
183
, p.
104685
.
16.
Vadlamani
,
V. K.
,
Chalivendra
,
V.
,
Shukla
,
A.
, and
Yang
,
S.
,
2012
, “
In Situ Sensing of Non-linear Deformation and Damage in Epoxy Particulate Composites
,”
Smart Mater. Struct.
,
21
(
7
), p.
075011
.
17.
Zhang
,
H.
,
Liu
,
Y.
,
Huang
,
M.
,
Bilotti
,
E.
, and
Peijs
,
T.
,
2018
, “
Dissolvable Thermoplastic Interleaves for Carbon Nanotube Localization in Carbon/Epoxy Laminates With Integrated Damage Sensing Capabilities
,”
Struct. Health Monit.
,
17
(
1
), pp.
59
66
.
18.
Vertuccio
,
L.
,
Vittoria
,
V.
,
Guadagno
,
L.
, and
De Santis
,
F.
,
2015
, “
Strain and Damage Monitoring in Carbon-Nanotube-Based Composite Under Cyclic Strain
,”
Compos. Part A
,
71
, pp.
9
16
.
19.
Kwon
,
D.-J.
,
Wang
,
Z.-J.
,
Choi
,
J.-Y.
,
Shin
,
P.-S.
,
DeVries
,
K. L.
, and
Park
,
J.-M.
,
2016
, “
Damage Sensing and Fracture Detection of CNT Paste Using Electrical Resistance Measurements
,”
Compos. Part B
,
90
, pp.
386
391
.
20.
Aly
,
K.
,
Li
,
A.
, and
Bradford
,
P. D.
,
2016
, “
Strain Sensing in Composites Using Aligned Carbon Nanotube Sheets Embedded in the Interlaminar Region
,”
Compos. Part A
,
90
, pp.
536
548
.
21.
Lim
,
A. S.
,
An
,
Q.
,
Chou
,
T.-W.
, and
Thostenson
,
E. T.
,
2011
, “
Mechanical and Electrical Response of Carbon Nanotube-Based Fabric Composites to Hopkinson Bar Loading
,”
Compos. Sci. Technol.
,
71
(
5
), pp.
616
621
.
22.
Heeder
,
N. J.
,
Shukla
,
A.
,
Chalivendra
,
V.
,
Yang
,
S.
, and
Park
,
K.
,
2012
, “
Electrical Response of Carbon Nanotube Reinforced Nanocomposites Under Static and Dynamic Loading
,”
Exp. Mech.
,
52
(
3
), pp.
315
322
.
23.
Heeder
,
N.
,
Shukla
,
A.
,
Chalivendra
,
V.
, and
Yang
,
S.
,
2012
, “
Sensitivity and Dynamic Electrical Response of CNT-Reinforced Nanocomposites
,”
J. Mater. Sci.
,
47
(
8
), pp.
3808
3816
.
24.
Fazlay Rabbi
,
M.
,
Meninno
,
C. M.
, and
Chalivendra
,
V.
,
2021
, “
Damage Monitoring of Conductive Glass Fiber/Epoxy Laminated Composites Under Dynamic Mixed-Mode Fracture Loading
,”
Mater. Lett.
,
283
, p.
128766
.
25.
Steinke
,
K.
,
Groo
,
L.
, and
Sodano
,
H. A.
,
2021
, “
Laser Induced Graphene for In-Situ Ballistic Impact Damage and Delamination Detection in Aramid Fiber Reinforced Composites
,”
Compos. Sci. Technol.
,
202
, p.
108551
.
26.
Rabbi
,
M. F.
, and
Chalivendra
,
V.
,
2020
, “
Strain and Damage Sensing in Additively Manufactured CB/ABS Polymer Composites
,”
Polym. Test.
,
90
, p.
106688
.
27.
Chaudhary
,
B.
,
Matos
,
H.
,
Das
,
S.
, and
Owens
,
J.
,
2024
, “
Multifunctional Composite Structures With Embedded Conductive Yarns for Shock Load Monitoring and Failure Detection
,”
Smart Mater. Struct.
33
(
3
), p.
037001
.
28.
Lincon
,
M. I.
, and
Chalivendra
,
V. B.
,
2023
, “
Dynamic Fracture Toughness and Damage Monitoring in Hybrid Composites
,”
Appl. Compos. Mater.
,
30
(
6
), pp.
1907
1928
.
29.
Gere
,
J. M.
, and
Timoshenko
,
S. P.
,
1961
,
Theory of Elastic Stability
,
McGraw-Hill Book Company, Inc.
,
Toronto
.
30.
Fahr
,
P.
,
Yazici
,
M.
, and
Shukla
,
A.
,
2018
, “
Shock Response of Filled Corrugated Sandwich Structures Under Extreme Temperatures
,”
J. Sandwich Struct. Mater.
,
20
(
1
), pp.
130
149
.
31.
Wang
,
E.
, and
Shukla
,
A.
,
2010
, “
Analytical and Experimental Evaluation of Energies During Shock Wave Loading
,”
Int. J. Impact Eng.
,
37
(
12
), pp.
1188
1196
.
32.
Sutton
,
M. A.
,
Orteu
,
J. J.
, and
Schreier
,
H.
,
2009
,
Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications
,
Springer Science & Business Media
,
New York
.
33.
Shillings
,
C.
,
Javier
,
C.
,
LeBlanc
,
J.
,
Tilton
,
C.
,
Corvese
,
L.
, and
Shukla
,
A.
,
2017
, “
Experimental and Computational Investigation of the Blast Response of Carbon-Epoxy Weathered Composite Materials
,”
Compos. Part B
,
129
, pp.
107
116
.
34.
Javier
,
C.
,
Smith
,
T.
,
LeBlanc
,
J.
, and
Shukla
,
A.
,
2019
, “
Effect of Prolonged Ultraviolet Radiation Exposure on the Blast Response of Fiber Reinforced Composite Plates
,”
J. Mater. Eng. Perform.
,
28
(
6
), pp.
3174
3185
.
35.
Yuan
,
L.
, and
Batra
,
R. C.
,
2019
, “
Optimum First Failure Load Design of One/Two-Core Sandwich Plates Under Blast Loads, and Their Ultimate Loads
,”
Compos. Struct.
,
224
, p.
111022
.
36.
Goodman
,
L. E.
,
1959
,
A Review of Progress in Analysis of Interfacial Slip Damping
,
ASME, New York
.
37.
Harris
,
C. M.
,
n.d.
, Handbook of Noise Control, Google Scholar, https://scholar.google.com/scholar_lookup?title=Handbook of Noise Control&publication_year=1979&author=C.M. Harris, Accessed December 5, 2023.
38.
Lincon
,
M. I.
, and
Chalivendra
,
V. B.
,
2023
, “
High Strain Rate Damage Sensing in Intra-ply Hybrid Composites Under Dynamic Shear Loading
,”
Int. J. Impact Eng.
,
173
, p.
104439
.
You do not currently have access to this content.