Abstract

Intermittent beading is a promising design strategy that enables simultaneous improvement of strength and toughness of fiber-reinforced composites. Despite the potential for amplification in mechanical properties, the failure mechanisms of beaded fiber composites are not fully understood. In this study, calculations are carried out for the breakage of beaded fibers in the polymer matrix composites. The plastic deformation of the polymer matrix and debonding of the bead–matrix, fiber–bead, and fiber–matrix interfaces are accounted for in the numerical analyses. It is found that the location of fiber break is governed by the toughness of the fiber–bead interface and fiber strength. The low toughness of fiber–bead interface promotes the emergence of break inside bead, and high fiber strength is capable of activating break outside bead. The break at the edge of bead prevails in most cases. We have further revealed that the fiber–matrix interface with high strength and enhanced toughness can give rise to large amount of fiber breaks, while low degree of fiber cracking emerges in the case of strong fiber–bead interface. For the bead–matrix interface, the intermediate interfacial strength generates a high degree of fiber breaks and low interfacial toughness suppresses fiber cracking, leading to small amount of fiber breaks. In addition, the dependence of plastic dissipation in the polymer matrix on fiber breakage is elucidated.

References

1.
Evans
,
A. G.
,
Zok
,
F. W.
, and
Davis
,
J.
,
1991
, “
The Role of Interfaces in Fiber-Reinforced Brittle Matrix Composites
,”
Compos. Sci. Technol.
,
42
(
1–3
), pp.
3
24
.
2.
Ranjbar
,
N.
,
Talebian
,
S.
,
Mehrali
,
M.
,
Kuenzel
,
C.
,
Metselaar
,
H. S. C.
, and
Jumaat
,
M. Z.
,
2016
, “
Mechanisms of Interfacial Bond in Steel and Polypropylene Fiber Reinforced Geopolymer Composites
,”
Compos. Sci. Technol.
,
122
, pp.
73
81
.
3.
Mao
,
Y.
,
Coenen
,
J. W.
,
Riesch
,
J.
,
Sistla
,
S.
,
Almanstötter
,
J.
,
Jasper
,
B.
,
Terra
,
A.
, et al
,
2018
, “
Influence of the Interface Strength on the Mechanical Properties of Discontinuous Tungsten Fiber-Reinforced Tungsten Composites Produced by Field Assisted Sintering Technology
,”
Compos. Part A Appl. Sci. Manuf.
,
107
, pp.
342
353
.
4.
Lavoie
,
S. R.
,
Hassan
,
S.
,
Kim
,
J.
,
Yin
,
T.
, and
Suo
,
Z.
,
2021
, “
Toughness of a Composite in Which Sliding Between Fibers and Matrix is Rate-Sensitive
,”
Extreme Mech. Lett.
,
46
, p.
101317
.
5.
Koch
,
D.
,
Tushtev
,
K.
, and
Grathwohl
,
G.
,
2008
, “
Ceramic Fiber Composites: Experimental Analysis and Modeling of Mechanical Properties
,”
Compos. Sci. Technol.
,
68
(
5
), pp.
1165
1172
.
6.
Zhou
,
Y.
,
Fan
,
M.
, and
Chen
,
L.
,
2016
, “
Interface and Bonding Mechanisms of Plant Fibre Composites: An Overview
,”
Compos. Part B Eng.
,
101
, pp.
31
45
.
7.
Yamane
,
H.
,
Oura
,
M.
,
Yamazaki
,
N.
,
Ishihara
,
T.
,
Hasegawa
,
K.
,
Ishikawa
,
T.
,
Takagi
,
K.
, and
Hatsui
,
T.
,
2022
, “
Visualizing Interface-Specific Chemical Bonds in Adhesive Bonding of Carbon Fiber Structural Composites Using Soft X-ray Microscopy
,”
Sci. Rep.
,
12
(
1
), p.
16332
.
8.
Chen
,
X.
,
Beyerlein
,
I. J.
, and
Brinson
,
L. C.
,
2009
, “
Curved-Fiber Pull-Out Model for Nanocomposites. Part 1: Bonded Stage Formulation
,”
Mech. Mater.
,
41
(
3
), pp.
279
292
.
9.
Tanoglu
,
M.
,
McKnight
,
S. H.
,
Palmese
,
G. R.
, and
Gillespie
,
J. W.
, Jr.
,
2001
, “
Effects of Glass-Fiber Sizings on the Strength and Energy Absorption of the Fiber/Matrix Interphase Under High Loading Rates
,”
Compos. Sci. Technol.
,
61
(
2
), pp.
205
220
.
10.
Fratzl
,
P.
,
2007
, “
Biomimetic Materials Research: What Can We Really Learn From Nature's Structural Materials?
,”
J. R. Soc. Interface
,
4
(
15
), pp.
637
642
.
11.
Ritchie
,
R. O.
,
2011
, “
The Conflicts Between Strength and Toughness
,”
Nat. Mater.
,
10
(
11
), pp.
817
822
.
12.
Koester
,
K. J.
,
Ager
J. W.
, III
, and
Ritchie
,
R. O.
,
2008
, “
The True Toughness of Human Cortical Bone Measured With Realistically Short Cracks
,”
Nat. Mater.
,
7
(
8
), pp.
672
677
.
13.
Gupta
,
H. S.
,
Seto
,
J.
,
Wagermaier
,
W.
,
Zaslansky
,
P.
,
Boesecke
,
P.
, and
Fratzl
,
P.
,
2006
, “
Cooperative Deformation of Mineral and Collagen in Bone at the Nanoscale
,”
Proc. Natl. Acad. Sci.
,
103
(
47
), pp.
17741
17746
.
14.
Ji
,
B.
, and
Gao
,
H.
,
2004
, “
Mechanical Properties of Nanostructure of Biological Materials
,”
J. Mech. Phys. Solids
,
52
(
9
), pp.
1963
1990
.
15.
Katti
,
K. S.
, and
Katti
,
D. R.
,
2006
, “
Why Is Nacre So Tough and Strong?
,”
Mater. Sci. Eng. C
,
26
(
8
), pp.
1317
1324
.
16.
Espinosa
,
H. D.
,
Juster
,
A. L.
,
Latourte
,
F. J.
,
Loh
,
O. Y.
,
Gregoire
,
D.
, and
Zavattieri
,
P. D.
,
2011
, “
Tablet-Level Origin of Toughening in Abalone Shells and Translation to Synthetic Composite Materials
,”
Nat. Commun.
,
2
(
1
), p.
173
.
17.
Malik
,
I. A.
,
Mirkhalaf
,
M.
, and
Barthelat
,
F.
,
2017
, “
Bio-Inspired “Jigsaw”-Like Interlocking Sutures: Modeling, Optimization, 3D Printing and Testing
,”
J. Mech. Phys. Solids
,
102
, pp.
224
238
.
18.
Greenfeld
,
I.
,
Zhang
,
W.
,
Sui
,
X.
, and
Wagner
,
H. D.
,
2018
, “
Intermittent Beading in Fiber Composites
,”
Compos. Sci. Technol.
,
160
, pp.
21
31
.
19.
Greenfeld
,
I.
,
Rodricks
,
C. W.
,
Sui
,
X.
, and
Wagner
,
H. D.
,
2019
, “
Beaded Fiber Composites – Stiffness and Strength Modeling
,”
J. Mech. Phys. Solids
,
125
, pp.
384
400
.
20.
Rodricks
,
C. W.
,
Greenfeld
,
I.
, and
Wagner
,
H. D.
,
2021
, “
Polymer Beads as Interfacial Obstacles in Fibre Composites
,”
Compos. Sci. Technol.
,
210
, p.
108793
.
21.
Xu
,
M.
,
Wagner
,
H. D.
, and
An
,
B.
,
2023
, “
Pullout Resistance of Beaded Fibers in a Polymer Matrix
,”
ASME J. Appl. Mech.
,
90
(2), p.
021007
.
22.
Xu
,
M.
, and
An
,
B.
,
2022
, “
Plastic Deformation of Polymer Matrix Composites Reinforced With Beaded Fibers
,”
Int. J. Solids Struct.
,
256
, p.
111985
.
23.
Rodricks
,
C. W.
,
Greenfeld
,
I.
,
Fiedler
,
B.
, and
Wagner
,
H. D.
,
2022
, “
Fragmentation of Beaded Fibres in a Composite
,”
Materials
,
15
(
3
), p.
890
.
24.
Parmigiani
,
J. P.
, and
Thouless
,
M. D.
,
2006
, “
The Roles of Toughness and Cohesive Strength on Crack Deflection at Interfaces
,”
J. Mech. Phys. Solids
,
54
(
2
), pp.
266
287
.
25.
Belytschko
,
T.
,
Chiapetta
,
R. L.
, and
Bartel
,
H. D.
,
1976
, “
Efficient Large Scale Non-Linear Transient Analysis by Finite Elements
,”
Int. J. Numer. Methods Eng.
,
10
(
3
), pp.
579
596
.
26.
McCarthy
,
E. D.
, and
Soutis
,
C.
,
2019
, “
Determination of Interfacial Shear Strength in Continuous Fibre Composites by Multi-fibre Fragmentation: A Review
,”
Compos. Part A Appl. Sci. Manuf.
,
118
, pp.
281
292
.
27.
AhmadvashAghbash
,
S.
,
Breite
,
C.
,
Mehdikhani
,
M.
, and
Swolfs
,
Y.
,
2022
, “
Longitudinal Debonding in Unidirectional Fibre-Reinforced Composites: Numerical Analysis of the Effect of Interfacial Properties
,”
Compos. Sci. Technol.
,
218
, p.
109117
.
28.
Needleman
,
A.
,
Borders
,
T. L.
,
Brinson
,
L. C.
,
Flores
,
V. M.
, and
Schadler
,
L. S.
,
2010
, “
Effect of an Interphase Region on Debonding of a CNT Reinforced Polymer Composite
,”
Compos. Sci. Technol.
,
70
(
15
), pp.
2207
2215
.
You do not currently have access to this content.