Abstract

Fatigue is a damage accumulation process in which material properties are continuously deteriorated and degraded under cyclic loading. Damage accumulation analysis plays a key role in preventing the occurrence of fatigue failure, and the damage evolution mechanism is an important parameter of interest for fatigue behavior. The fatigue cumulative damage life prediction model is established by focusing on the damage evolution mechanism, and an improved Manson–Harford cumulative damage nonlinear model is developed to calculate fatigue damage life by considering the effect of load ratio of multi-stage loading on fatigue life. A fatigue life prediction method considering high-low cycles and multi-stage mixed loads is proposed. The fatigue life prediction accuracy of the model is verified by fatigue tests on structural samples. The accuracy of the fatigue life prediction error is the highest among similar models under the same test, the model proposed in this paper.

References

1.
Ji
,
W.
,
Zhou
,
R.
,
Vivegananthan
,
P.
,
See Wu
,
M.
,
Gao
,
H.
, and
Zhou
,
K.
,
2023
, “
Recent Progress in Gradient-Structured Metals and Alloys
,”
Prog. Mater. Sci.
,
140
, p.
101194
.
2.
Yang
,
S.
,
Hu
,
W.
,
Meng
,
Q.
, and
Zhao
,
B.
,
2020
, “
A New Continuum Damage Mechanics–Based Twoscale Model for High-Cycle Fatigue Life Prediction Considering the Two-Segment Characteristic in S-N Curves
,”
Fatigue Fract. Eng. Mater. Struct.
,
43
(
2
), pp.
387
402
.
3.
Ansari
,
M. T. A.
,
Singh
,
K. K.
, and
Azam
,
M. S.
,
2018
, “
Fatigue Damage Analysis of Fiber-Reinforced Polymer Composites—A Review
,”
J. Reinf. Plast. Compos.
,
37
(
9
), p.
073168441875471
.
4.
Pan
,
Q.
, and
Lu
,
L.
,
2020
, “
Improved Fatigue Resistance of Gradient Nanograined Metallicmaterials: Suppress Strain Localization and Damage Accumulation
,”
Scr. Mater.
,
187
, pp.
301
306
.
5.
Lin
,
Y.
,
Yu
,
Q.
,
Pan
,
J.
,
Duan
,
F.
,
Ritchie
,
R. O.
, and
Li
,
Y.
,
2020
, “
On the Impact Toughness of Gradient-Structured Metals
,”
Acta Mater.
,
193
, pp.
125
137
.
6.
Roland
,
T.
,
Retraint
,
D.
,
Lu
,
K.
, and
Lu
,
J.
,
2006
, “
Fatigue Life Improvement Through Surface Nanostructuring Ofstainless Steel by Means of Surface Mechanical Attrition Treatment
,”
Scripta Matrialia
,
54
(
11
), pp.
1949
1954
.
7.
Hectors
,
K.
, and
De Waele
,
W.
,
2021
, “
Cumulative Damage and Life Prediction Models for High-Cycle Fatigue of Metals: A Review
,”
Metals
,
11
(
2
), p.
204
.
8.
Richart
,
F. E.
, and
Newmark
,
N. M.
,
1948
, “
An Hypothesis for the Determination of Cumulative Damage in Fatigue
,”
Proc. Am. Soc. Test. Mater.
,
48
, pp.
767
800
.
9.
Schütz
,
W.
,
1996
, “
A History of Fatigue
,”
Eng. Fract. Mech.
,
54
(
2
), pp.
263
300
.
10.
Bandara
,
C. S.
,
Siriwardane
,
S. C.
,
Dissanayake
,
U. I.
, and
Dissanayake
,
R.
,
2014
, “
Fatigue Failure Predictions for Steels in the Very High Cycle Region—A Review and Recommendations
,”
Eng. Fail. Anal.
,
45
, pp.
421
435
.
11.
Jimenez-Martinez
,
M.
,
2020
, “
Fatigue of Offshore Structures: A Review of Statistical Fatigue Damage Assessment for Stochastic Loadings
,”
Int. J. Fatigue
,
132
, p.
105327
.
12.
Manson
,
S. S.
,
1966
, “
Interfaces Between Fatigue Creep and Fracture
,”
Int. J. Fract. Mech.
,
2
(
1
), pp.
327
363
.
13.
Manson
,
S. S.
, and
Halford
,
G. R.
,
1981
, “
Practical Implementation of the Double Linear Damage Rule and Damage Curve Approach for Treating Cumulative Fatigue Damage
,”
Int. J. Fract.
,
17
(
2
), pp.
169
192
.
14.
Itoh
,
T.
,
Chen
,
X.
,
Nakagawa
,
T.
, and
Sakane
,
M.
,
2000
, “
A Simple Model for Stable Cyclic Stress-Strain Relationship of Type 304 Stainless Steel Under Nonproportional Loading
,”
ASME J. Eng. Mater. Technol.
,
122
(
1
), pp.
1
9
.
15.
Gao
,
H. Y.
,
Huang
,
H. Z.
,
Zhu
,
S. P.
,
Li
,
Y. F.
, and
Rong
,
Y.
,
2014
, “
A Modified Nonlinear Damage Accumulation Model for Fatigue Life Prediction Considering Load Interaction Effects
,”
Sci. World J.
,
2014
, pp.
1
20
.
16.
Zhou
,
Y.
,
Mu
,
D. S.
,
Han
,
Y. B.
,
Huang
,
X. W.
, and
Zhang
,
C. C.
,
2019
, “Application of the Nonlinear Fatigue Damage Cumulative on the Prediction for Rail Head Checks Initiation and Wear Growth,”
Mechanical Fatigue of Metals
. 7(1), pp.
239
244
.
17.
Yuan
,
R.
,
Li
,
H. Q.
,
Huang
,
H. Z.
, and
Gao
,
H.
,
2015
, “
A Nonlinear Fatigue Damage Accumulation Model Considering Strength Degradation and Its Applications to Fatigue Reliability Analysis
,”
Int. J. Damage Mech.
,
24
(
5
), pp.
646
662
.
18.
Gao
,
K.
,
Liu
,
G.
, and
Tang
,
W.
,
2021
, “
An Improved Manson-Halford Model for Multi-Level Nonlinear Fatigue Life Prediction
,”
Int. J. Fatigue
,
151
, p.
106393
.
You do not currently have access to this content.