Abstract

The effects of relative humidity and fiber treatment on the mechanical properties of Grewia optiva natural fibers reinforced composites were studied. The results revealed that the fiber reinforcement composition with benzoyl peroxide (BP) treatment on NaOH-pretreated fiber shows optimum results at 90% relative humidity. The corresponding experimental results of the tensile strength (MPa), percentage elongation, flexural strength (MPa), impact strength (kJ/m2), and fracture toughness (MPa √m) were 260.895, 5.230, 52.572, 33.226, and 2.565, respectively. The surface response method yielded the optimum properties with a D value of 0.768 and properties variation between 1% and 6%. Thermogravimetry analysis shows a considerable amount of variation in the rate of degradation after the chemical treatment of fibers. A decrease in the damping factor and an increase in glass transition temperature due to chemical treatment show increased fiber-matrix interfacial bonding and cross-linking. Scanning electron microscopy images show that BP treatment is more suitable than NaOH treatment to remove the undesirable elements from the fiber surface and higher surface roughness to obtain better bonding between fiber and matrix. The fiber diameter reduction due to BP and NaOH treatment is about 57% and 52.62% as compared to untreated fiber.

References

1.
Mann
,
G. S.
,
Azum
,
N.
,
Khan
,
A.
,
Rub
,
M. A.
,
Hassan
,
M. I.
,
Fatima
,
K.
, and
Asiri
,
A. M.
,
2023
, “
Green Composites Based on Animal Fiber and Their Applications for a Sustainable Future
,”
Polymers
,
15
(
3
), p.
601
.
2.
Pandey
,
J. K.
,
Ahn
,
S. H.
,
Lee
,
C. S.
,
Mohanty
,
A. K.
, and
Misra
,
M.
,
2010
, “
Recent Advances in the Application of Natural Fiber Based Composites
,”
Macromol. Mater. Eng.
,
295
(
11
), pp.
975
989
.
3.
Ramesh
,
M.
,
Rajeshkumar
,
L.
,
Balaji
,
D.
, and
Bhuvaneswari
,
V.
,
2021
, “Green Composite Using Agricultural Waste Reinforcement,”
Green Composites
,
S.
Thomas
and
P.
Balakrishnan
, eds.,
Springer
, pp.
21
34
.
4.
Kumar
,
R.
,
Ul Haq
,
M. I.
,
Raina
,
A.
, and
Anand
,
A.
,
2019
, “
Industrial Applications of Natural Fiber-Reinforced Polymer Composites–Challenges and Opportunities
,”
Int. J. Sustain. Eng.
,
12
(
3
), pp.
212
220
.
5.
Singha
,
A. S.
, and
Rana
,
A. K.
,
2012
, “
A Comparative Study on Functionalization of Cellulosic Biofiber by Graft Copolymerization of Acrylic Acid in Air and Under Microwave Radiation
,”
BioResources
,
7
(
2
), pp.
219
237
.
6.
Karakoti
,
A.
,
Aseer
,
J. R.
,
Dasan
,
P. K.
, and
Rajesh
,
M.
,
2022
, “
Micro Cellulose Grewia Optiva Fiber-Reinforced Polymer Composites: Relationship Between Structural and Mechanical Properties
,”
J. Nat. Fibers
,
19
(
6
), pp.
2140
2151
.
7.
Sharma
,
V.
,
Vinayak
,
H. K.
, and
Marwaha
,
B. M.
,
2015
, “
Enhancing Compressive Strength of Soil Using Natural Fibers
,”
Constr. Build. Mater.
,
93
, pp.
943
949
. .
8.
Priya
,
B.
,
Singha
,
A. S.
, and
Pathania
,
D.
,
2015
, “
Synthesis and Kinetics of Ascorbic Acid Initiated Graft Copolymerized Delignified Cellulosic Fiber
,”
Polym. Eng. Sci.
,
55
(
2
), pp.
474
484
.
9.
Kulkarni
,
A. G.
,
Satyanarayana
,
K. G.
,
Rohatgi
,
P. K.
, and
Vijayan
,
K.
,
1983
, “
Mechanical Properties of Banana Fibers (Musa Sepientum)
,”
J. Mater. Sci.
,
18
(
8
), pp.
2290
2296
.
10.
Hariprasad
,
K.
,
Ravichandran
,
K.
,
Jayaseelan
,
V.
, and
Muthuramalingam
,
T.
,
2020
, “
Acoustic and Mechanical Characterisation of Polypropylene Composites Reinforced by Natural Fibers for Automotive Applications
,”
J. Mater. Res. Technol.
,
9
(
6
), pp.
14029
14035
.
11.
Singha
,
A. S.
, and
Thakur
,
V. K.
,
2008
, “
Synthesis and Characterization of Grewia Optiva Fiber-Reinforced PF-Based Composites
,”
Int. J. Polym. Mater.
,
57
(
12
), pp.
1059
1074
.
12.
Bajpai
,
P. K.
,
Singh
,
I.
, and
Madaan
,
J.
,
2012
, “
Comparative Studies of Mechanical and Morphological Properties of Polylactic Acid and Polypropylene Based Natural Fiber Composites
,”
J. Reinf. Plast. Compos.
,
31
(
24
), pp.
1712
1724
.
13.
Gupta
,
K. M.
, and
Kalauni
,
K.
,
2015
, “
Fabrication and Characterization of Biocomposite Using Grewia Optiva Fiber (i.e. Bhimal) Reinforced Polyvinyl Alcohol (PVA)
,”
Adv. Mat. Res.
,
1105
, pp.
51
55
.
14.
Singha
,
A. S.
,
Priya
,
B.
, and
Pathania
,
D.
,
2015
, “
Cornstarch/Poly (Vinyl Alcohol) Biocomposite Blend Films: Mechanical Properties, Thermal Behavior, Fire Retardancy, and Antibacterial Activity
,”
Int. J. Polym. Anal. Charact.
,
20
(
4
), pp.
357
366
.
15.
Kumar
,
S.
,
Gangil
,
B.
, and
Patel
,
V. K.
,
2016
, “
Physico-Mechanical and Tribological Properties of Grewia Optiva Fiber/Bio-Particulates Hybrid Polymer Composites
,”
AIP Conf. Proc.
,
1728
(
1
), p.
020384
.
16.
Chauhan
,
S.
, and
Gope
,
P. C.
,
2023
, “
Effect of Water Absorption on the Mechanical Properties of Grewia Optiva Fiber Reinforced Biocomposites
,”
Int. J. Mech. Therm. Eng.
,
4
(
1
), pp.
09
13
.
17.
Kumar
,
S.
,
Patel
,
V. K.
,
Mer
,
K. K. S.
,
Gangil
,
B.
,
Singh
,
T.
, and
Fekete
,
G.
,
2019
, “
Himalayan Natural Fiber-Reinforced Epoxy Composites: Effect of Grewia Optiva/Bauhinia Vahlii Fibers on Physico-Mechanical and Dry Sliding Wear Behavior
,”
J. Nat. Fibers.
18
(
2
), pp.
192
202
.
18.
Rana
,
A. K.
,
Potluri
,
P.
, and
Thakur
,
V. K.
,
2021
, “
Cellulosic Grewia Optiva Fibers: Towards Chemistry, Surface Engineering and Sustainable Materials
,”
J. Environm. Chem. Eng.
,
9
(
5
), p.
106059
.
19.
Leao
,
A. L.
,
Rowell
,
R.
, and
Tavares
,
N.
,
1998
, “Applications of Natural Fibers in Automotive Industry in Brazilâ Thermoforming Process,”
Science and Technology of Polymers and Advanced Materials: Emerging Technologies and Business Opportunities
,
P. N.
Prasad
,
J. E.
Mark
,
S. H.
Kandil
, and
Z. H.
Kafafi
, eds.,
Springer US
,
Boston, MA
, pp.
755
761
.
20.
Asim
,
M.
,
Uddin
,
G. M.
,
Jamshaid
,
H.
,
Raza
,
A.
,
Hussain
,
U.
,
Satti
,
A. N.
,
Hayat
,
N.
, and
Arafat
,
S. M.
,
2020
, “
Comparative Experimental Investigation of Natural Fibers Reinforced Light Weight Concrete as Thermally Efficient Building Materials
,”
J. Build Eng.
,
31
, p.
101411
.
21.
Ahamed
,
M. S.
,
Ravichandran
,
P.
, and
Krishnaraja
,
A. R.
,
2021
, “
Natural Fibers in Concrete–A Review
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1055
(
1
), p.
012038
.
22.
Friedrich
,
K.
,
2012
,
Application of Fracture Mechanics to Composite Materials
,
Elsevier
,
New York
.
23.
Hore
,
K.
, and
Maiti
,
A.
,
2001
, “
Compressive Behavior and Fracture Features of Rubber Bearing Glass-Epoxy Composites Exposed to Aqueous Media
,”
J. Reinf. Plast. Compos.
,
20
(
17
), pp.
1546
1554
.
24.
Wahit
,
M. U.
,
Akos
,
N. I.
, and
Laftah
,
W. A.
,
2012
, “
Influence of Natural Fibers on the Mechanical Properties and Biodegradation of Poly (Lactic Acid) and Poly (ɛ-Caprolactone) Composites: A Review
,”
Polym. Compos.
,
33
(
7
), pp.
1045
1053
.
25.
Singha
,
A. S.
, and
Rana
,
A. K.
,
2012
, “
Effect of Surface Modification of Grewia Optiva Fibers on Their Physicochemical and Thermal Properties
,”
Bull. Mater. Sci.
,
35
, pp.
1099
1110
.
26.
Moudood
,
A.
,
Rahman
,
A.
,
Öchsner
,
A.
,
Islam
,
M. M.
,
Ali
,
M. Y.
, and
Francucci
,
G.
,
2020
, “
Effects of Different Relative Humidities on Flax Fibers Prior to Manufacturing Their Composites Based on the Shear Response
,”
Adv. Mater. Sci. Eng.
,
2020
, pp.
1
7
.
27.
Moudood
,
A.
,
Hall
,
W.
,
Öchsner
,
A.
,
Li
,
H.
,
Rahman
,
A.
, and
Francucci
,
G.
,
2019
, “
Effect of Moisture in Flax Fibers on the Quality of Their Composites
,”
J. Nat. Fibers
,
16
(
2
), pp.
209
224
.
28.
Madhusudhana
,
H. K.
,
Desai
,
B.
, and
Venkatesha
,
C. S.
,
2018
, “
Experimental Investigation on Parameter Effects on Fracture Toughness of Hemp Fiber Reinforced Polymer Composites
,”
Mater. Today: Proc.
,
5
(
9
), pp.
20002
20012
.
29.
Gope
,
P. C.
,
Singh
,
V. K.
, and
Rao
,
D. K.
,
2015
, “
Mode I Fracture Toughness of Bio-Fiber and Bio-Shell Particle Reinforced Epoxy Bio-Composites
,”
J. Reinf. Plast. Compos.
,
34
(
13
), pp.
1075
1089
.
30.
Gope
,
P. C.
, and
Rao
,
D. K.
,
2016
, “
Fracture Behaviour of Epoxy Biocomposite Reinforced With Short Coconut Fibers (Cocos Nucifera) and Walnut Particles (Juglans regia L.)
,”
J. Thermoplast. Compos. Mater.
,
29
(
8
), pp.
1098
1117
.
31.
Chauhan
,
S.
, and
Gope
,
P. C.
,
2023
, “
Optimization of Mode-I Fracture Toughness Using the Taguchi Method in Cellulosic Fiber-Grewia Optiva Reinforced Biocomposites
,”
J. Appl. Polym. Sci.
,
140
(
37
), p.
e54395
.
32.
Cowley
,
K. D.
, and
Beaumont
,
P. W.
,
1997
, “
The Interlaminar and Intralaminar Fracture Toughness of Carbon-Fiber/Polymer Composites: The Effect of Temperature
,”
Compos. Sci. Technol.
,
57
(
11
), pp.
1433
1444
.
33.
Watt
,
A.
,
Goodwin
,
A. A.
, and
Mouritz
,
A. P.
,
1998
, “
Thermal Degradation of the Mode I Interlaminar Fracture Properties of Stitched Glass Fiber/Vinyl Ester Composites
,”
J. Mater. Sci.
,
33
(
10
), pp.
2629
2638
.
34.
Machado
,
J. J. M.
,
Marques
,
E. A. S.
,
Campilho
,
R. D. S. G.
, and
da Silva
,
L. F.
,
2017
, “
Mode I Fracture Toughness of CFRP as a Function of Temperature and Strain Rate
,”
J. Compos. Mater.
,
51
(
23
), pp.
3315
3326
.
35.
Oliver
,
M. S.
, and
Johnson
,
W. S.
,
2009
, “
Effect of Temperature on Mode I Interlaminar Fracture of IM7/PETI-5 and IM7/977-2 Laminates
,”
J. Compos. Mater.
,
43
(
10
), pp.
1213
1219
.
36.
Davidson
,
B. D.
,
Kumar
,
M.
, and
Soffa
,
M. A.
,
2009
, “
Influence of Mode Ratio and Hygrothermal Condition on the Delamination Toughness of a Thermoplastic Particulate Interlayered Carbon/Epoxy Composite
,”
Compos. A: Appl. Sci. Manuf.
,
40
(
1
), pp.
67
79
.
37.
Olsson
,
R.
,
1992
, “Factors Influencing the Interlaminar Fracture Toughness and Its Evaluation in Composites,” NASA STI/Recon Technical Report N, 93, p.
29076
.
38.
Koronis
,
G.
,
Silva
,
A.
, and
Foong
,
S.
,
2017
, “
Predicting the Flexural Performance of Woven Flax Reinforced Epoxy Composites Using Design of Experiments
,”
Mater. Today Commun.
,
13
, pp.
317
324
.
39.
Khamtree
,
S.
,
Ratanawilai
,
T.
, and
Ratanawilai
,
S.
,
2020
, “
Determining the Optimum Conditions for Silane Treated Rubberwood Flour-Recycled Polypropylene Composites Using Response Surface Methodology
,”
Mater. Today Commun.
,
24
, pp.
100971
.
40.
Saravanan
,
N.
,
Kumar
,
N.
,
Bharathiraja
,
G.
, and
Pandiyarajan
,
R.
,
2022
, “
Optimization and Characterization of Surface Treated Lagenaria Siceraria Fiber and Its Reinforcement Effect on Epoxy Composites
,”
Pigment Resin Technol.
,
52
(
2
), pp.
273
284
.
41.
Haniel
,
Bawono
,
B.
, and
Anggoro
,
P. W.
,
2023
, “
Optimization of Characteristics Polymer Composite Reinforced Kenaf and Jute Fiber Using Taguchi-Response Surface Methodology Approach
,”
J. Nat. Fibers
,
20
(
2
), p.
2204453
.
42.
Kumar
,
R.
,
Ganguly
,
A.
, and
Purohit
,
R.
,
2023
, “
Optimization of Mechanical Properties of Bamboo Fiber Reinforced Epoxy Hybrid Nano Composites by Response Surface Methodology
,”
Int. J. Interact. Des. Manuf. (IJIDeM)
, pp.
1
14
.
43.
Iliyasu
,
I.
,
Bello
,
J. B.
,
Dibal
,
M. N.
,
Oyedeji
,
A. N.
,
Salami
,
K. A.
, and
Oyedeji
,
E. O.
,
2022
, “
Response Surface Methodology for the Optimization of the Effect of Fiber Parameters on the Physical and Mechanical Properties of Deleb Palm Fiber Reinforced Epoxy Composites
,”
Sci. Afr.
,
16
, p.
e01269
.
44.
Singha
,
A. S.
, and
Rana
,
A. K.
,
2012
, “
Effect of Graft Copolymerization on Mechanical, Thermal, and Chemical Properties of Grewia Optiva/Unsaturated Polyester Biocomposites
,”
Polym. Compos.
,
33
(
8
), pp.
1403
1414
.
45.
Thakur
,
V. K.
,
Thakur
,
M. K.
, and
Gupta
,
R. K.
,
2014
, “
Graft Copolymers of Natural Fibers for Green Composites
,”
Carbohydr. Polym.
,
104
, pp.
87
93
.
46.
Singha
,
A. S.
, and
Rana
,
A. K.
,
2013
, “
Effect of Aminopropyltriethoxysilane (APS) Treatment on Properties of Mercerized Lignocellulosic Grewia Optiva Fiber
,”
J. Polym. Environ.
,
21
(
1
), pp.
141
150
.
47.
Singha
,
A. S.
,
Rana
,
A. K.
, and
Jarial
,
R. K.
,
2013
, “
Mechanical, Dielectric and Thermal Properties of Grewia Optiva Fibers Reinforced Unsaturated Polyester Matrix Based Composites
,”
Mater. Des.
,
51
, pp.
924
934
.
48.
Ramachandran
,
A.
,
Mavinkere Rangappa
,
S.
,
Kushvaha
,
V.
,
Khan
,
A.
,
Seingchin
,
S.
, and
Dhakal
,
H. N.
,
2022
, “
Modification of Fibers and Matrices in Natural Fiber Reinforced Polymer Composites: A Comprehensive Review
,”
Macromol. Rapid Commun.
,
43
(
17
), pp.
2100862
.
49.
Hong
,
C. K.
,
Kim
,
N.
,
Kang
,
S. L.
,
Nah
,
C.
,
Lee
,
Y. S.
,
Cho
,
B. H.
, and
Ahn
,
J. H.
,
2008
, “
Mechanical Properties of Maleic Anhydride Treated Jute Fiber/Polypropylene Composites
,”
Plast. Rubber Compos.
,
37
(
7
), pp.
325
330
.
50.
Koziol
,
M.
,
Bogdan-Wlodek
,
A.
,
Myalski
,
J.
, and
Wieczorek
,
J.
,
2011
, “
Influence of Wet Chemistry Treatment on the Mechanical Performance of Natural Fibers
,”
Pol. J. Chem. Technol.
,
13
(
4
), pp.
21
27
.
51.
Kaushik
,
V. K.
,
Kumar
,
A.
, and
Kalia
,
S.
,
2012
, “
Effect of Mercerization and Benzoyl Peroxide Treatment on Morphology, Thermal Stability and Crystallinity of Sisal Fibers
,”
Int. J. Text. Sci.
,
1
(
6
), pp.
101
105
.
52.
Paridah
,
M. D. T. A.
,
Ahmed
,
B.
,
Azry
,
S. O. A.
, and
Ahmed
,
Z.
,
2011
, “
Review of Bast Fiber Retting
,”
Biol. Resour.
,
6
(
4
), pp.
5260
5281
. DOI: 10.15376/biores.6.4.5260-5281
53.
Chauhan
,
S.
, and
Gope
,
P. C.
,
2023
, “
A Novel Bast Fiber Grewia Optiva and the Effect of Mercerization on Its Properties
,”
NanoWorld J.
,
9
(
S1
), pp.
S582
S586
.
54.
Gope
,
P. C.
,
2018
, “
Maximum Tangential Stress Coupled With Probabilistic Aspect of Fracture Toughness of Hybrid Bio-Composite
,”
Eng. Sci. Technol. Int. J.
,
21
(
2
), pp.
201
214
.
55.
ASTM D3039/D3039M
,
2002
,
Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials
,
American Society for Testing and Materials, ASTM International
,
West Conshohocken, PA
.
56.
ASTM D790-17
,
2017
,
Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials
,
American Society for Testing and Materials, ASTM International
,
West Conshohocken, PA
.
57.
ASTM D256-10
,
2015
,
Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics
,
American Society for Testing and Materials, ASTM International
,
West Conshohocken, PA
.
58.
ASTM D5045-14
,
2014
,
Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials
,
American Society for Testing and Materials, ASTM International
,
West Conshohocken, PA
.
59.
ASTM D5026-01
. Standard Test Method for Plastics: Dynamic Mechanical Properties: In Tension.
60.
Kumari
,
Y. R.
,
Ramanaiah
,
K.
,
Prasad
,
A. R.
,
Reddy
,
K. H.
,
Sanaka
,
S. P.
, and
Prudhvi
,
A. K.
,
2021
, “
Experimental Investigation of Water Absorption Behaviour of Sisal Fiber Reinforced Polyester and Sisal Fiber Reinforced Poly Lactic Acid Composites
,”
Mater. Today: Proc.
,
44
(
1
), pp.
935
940
.
61.
Mohammed
,
L.
,
Ansari
,
M. N.
,
Pua
,
G.
,
Jawaid
,
M.
, and
Islam
,
M. S.
,
2015
, “
A Review on Natural Fiber Reinforced Polymer Composite and Its Applications
,”
Int. J. Polym. Sci.
,
2015
, pp.
243947
.
62.
Saba
,
N.
,
Alothman
,
O. Y.
,
Almutairi
,
Z.
,
Jawaid
,
M.
, and
Ghori
,
W.
,
2019
, “
Date Palm Reinforced Epoxy Composites: Tensile, Impact and Morphological Properties
,”
J. Mater. Res. Technol.
,
8
(
5
), pp.
3959
3969
.
63.
Ismail
,
A. S.
,
Jawaid
,
M.
, and
Naveen
,
J.
,
2019
, “
Void Content, Tensile, Vibration and Acoustic Properties of Kenaf/Bamboo Fiber Reinforced Epoxy Hybrid Composites
,”
Materials
,
12
(
13
), p.
2094
.
64.
Faruk
,
O.
,
Bledzki
,
A. K.
,
Fink
,
H. P.
, and
Sain
,
M.
,
2012
, “
Biocomposites Reinforced With Natural Fibers: 2000–2010
,”
Prog. Polym. Sci.
,
37
(
11
), pp.
1552
1596
.
65.
Fiore
,
V.
,
Di Bella
,
G.
, and
Valenza
,
A.
,
2015
, “
The Effect of Alkaline Treatment on Mechanical Properties of Kenaf Fibers and Their Epoxy Composites
,”
Compos. B. Eng.
,
68
, pp.
14
21
. .
66.
Manalo
,
A. C.
,
Wani
,
E.
,
Zukarnain
,
N. A.
,
Karunasena
,
W.
, and
Lau
,
K. T.
,
2015
, “
Effects of Alkali Treatment and Elevated Temperature on the Mechanical Properties of Bamboo Fiber–Polyester Composites
,”
Compos. B. Eng.
,
80
, pp.
73
83
.
67.
Živković
,
I.
,
Fragassa
,
C.
,
Pavlović
,
A.
, and
Brugo
,
T.
,
2017
, “
Influence of Moisture Absorption on the Impact Properties of Flax, Basalt and Hybrid Flax/Basalt Fiber Reinforced Green Composites
,”
Compos. B. Eng.
,
111
, pp.
148
164
. .
68.
Zhou
,
Y.
,
Fan
,
M.
, and
Chen
,
L.
,
2016
, “
Interface and Bonding Mechanisms of Plant Fiber Composites: An Overview
,”
Compos. B. Eng.
,
101
, pp.
31
45
. .
69.
Mohammed
,
M. M.
,
Rasidi
,
M.
,
Mohammed
,
A. M.
,
Rahman
,
R. B.
,
Osman
,
A. F.
,
Adam
,
T.
,
Betar
,
B. O.
, and
Dahham
,
O. S.
,
2022
, “
Interfacial Bonding Mechanisms of Natural Fiber-Matrix Composites: An Overview
,”
BioResources
,
17
(
4
), p.
7031
.
70.
Spiewak
,
R.
,
Vankayalapati
,
G. S.
,
Considine
,
J. M.
,
Turner
,
K. T.
, and
Purohit
,
P. K.
,
2022
, “
Humidity Dependence of Fracture Toughness of Cellulose Fibrous Networks
,”
Eng. Fract. Mech.
,
264
, p.
108330
. .
71.
Chaudhary
,
V.
, and
Ahmad
,
F.
,
2020
, “
A Review on Plant Fiber Reinforced Thermoset Polymers for Structural and Frictional Composites
,”
Polym. Test.
,
91
(
2
), p.
106792
.
72.
Azadi
,
M.
,
Sayar
,
H.
,
Ghasemi-Ghalebahman
,
A.
, and
Jafari
,
S. M.
,
2019
, “
Tensile Loading Rate Effect on Mechanical Properties and Failure Mechanisms in Open-Hole Carbon Fiber Reinforced Polymer Composites by Acoustic Emission Approach
,”
Compos. B Eng.
,
158
, pp.
448
458
.
73.
Prabhudass
,
J. M.
,
Palanikumar
,
K.
,
Natarajan
,
E.
, and
Markandan
,
K.
,
2022
, “
Enhanced Thermal Stability, Mechanical Properties and Structural Integrity of MWCNT Filled Bamboo/Kenaf Hybrid Polymer Nanocomposites
,”
Materials
,
15
(
2
), p.
506
.
74.
Zhou
,
C.
,
Jiang
,
W.
,
Cheng
,
Q.
, and
Via
,
B. K.
,
2015
, “
Multivariate Calibration and Model Integrity for Wood Chemistry Using Fourier Transform Infrared Spectroscopy
,”
J. Anal. Methods Chem.
,
2015
(
3
), pp.
1
9
.
75.
Javier-Astete
,
R.
,
Jimenez-Davalos
,
J.
, and
Zolla
,
G.
,
2021
, “
Determination of Hemicellulose, Cellulose, Holocellulose and Lignin Content Using FTIR in Calycophyllum Spruceanum (Benth.) K. Schum and Guazuma Crinita Lam
,”
PLoS One
,
16
(
10
), p.
e0256559
.
76.
Zhang
,
F. D.
,
Xu
,
C. H.
,
Li
,
M. Y.
,
Chen
,
X. D.
,
Zhou
,
Q.
, and
Huang
,
A. M.
,
2016
, “
Identification of Dalbergia Cochinchinensis (CITES Appendix II) From Other Three Dalbergia Species Using FT-IR and 2D Correlation IR Spectroscopy
,”
Wood Sci. Technol.
,
50
(
4
), pp.
693
704
.
77.
Birniwa
,
A. H.
,
Abdullahi
,
S. S. A.
,
Yakasai
,
M. Y.
, and
Ismaila
,
A.
,
2021
, “
Studies on Physico-Mechanical Behaviour of Kenaf/Glass Fiber Reinforced Epoxy Hybrid Composites
,”
Bull. Chem. Soc. Ethiop.
,
35
(
1
), pp.
171
184
.
78.
Hajaligol
,
M.
,
Waymack
,
B.
, and
Kellogg
,
D.
,
2001
, “
Low Temperature Formation of Aromatic Hydrocarbon From Pyrolysis of Cellulosic Materials
,”
Fuel
,
80
(
12
), pp.
1799
1807
.
79.
Izani
,
M. N.
,
Paridah
,
M. T.
,
Anwar
,
U. M. K.
,
Nor
,
M. M.
, and
H’ng
,
P. S.
,
2013
, “
Effects of Fiber Treatment on Morphology, Tensile and Thermogravimetric Analysis of Oil Palm Empty Fruit Bunches Fibers
,”
Compos. B. Eng.
,
45
(
1
), pp.
1251
1257
.
80.
Peirce
,
F. T.
,
1929
, “
16-A Two-Phase Theory of the Absorption of Water Vapour by Cotton Cellulose
,”
J. Text. Inst. Trans.
,
20
(
6
), pp.
T133
T150
.
You do not currently have access to this content.