Abstract

This study investigates fatigue life and fracture in welded stainless steel 304L (SS 304L) resulting from load-controlled fatigue. This was done for specimens from two welding manufacturers. Mechanical testing was carried out using an MTS test frame in uniaxial tension. Specimens fabricated in three weld configurations (butt, lap, and butt-with-backer) were cycled at stress ratio R = 0.1, frequency f = 5 Hz, and experienced varying mean tensile stress. A comparison of the fatigue life of welded and unwelded (or pristine) specimens determined that the fatigue life of welded specimens is considerably shorter. The microstructure in the parent material (PM), heat-affected (HAZ), and fusion zones (FZ) was analyzed using SEM, and results suggest that, for a limited number of specimens (backer welds), fracture in the (FZ) was primarily the result of Zener–Stroh cracks. Most welded specimens fractured at the weld-HAZ interface (weld toe), and we postulate that stress concentrations primarily due to abrupt geometrical change at the weld interface led to crack initiation there. Additional stress concentrations at welding-induced defects (resulting from high temperature) such as second-phase particles, fatigue-induced defects, and preexisting impurities are responsible for crack initiation, crack growth, and eventual fracture. Comparison of unwelded and welded SN curve data using numerical curve-fitting methods reveals that the fatigue life of pristine SS 304L follows the expected sigmoid shape found in literature (specifically the Chandran fatigue model), while that of welded SS 304L deviates considerably in low cycle fatigue (LCF) and follows the Basquin power law equation.

References

1.
Meyers
,
M. A.
, and
Chawla
,
K. K.
,
2008
,
Mechanical Behavior of Materials
,
Cambridge University Press
.
2.
Cagle
,
M. S.
,
Bryan
,
K. E.
,
Dantin
,
M.
,
Furr
,
W. M.
,
Giri
,
D.
,
Huddleston
,
B.
,
Hudson
,
A.
, et al
,
2021
, “
Characterization and Modeling of the Fatigue Behavior of 304L Stainless Steel Using the MultiStage Fatigue (MSF) Model
,”
Int. J. Fatigue
,
151
, p.
106319
.
3.
Vincent
,
L.
,
Le Roux
,
J. C.
, and
Taheri
,
S.
,
2012
, “
On the High Cycle Fatigue Behavior of a Type 304L Stainless Steel at Room Temperature
,”
Int. J. Fatigue
,
38
, pp.
84
91
.
4.
Keller
,
E.
,
Khraishi
,
T. A.
, and
Johnson
,
K.
,
2020
, “
Mechanical Characterization of Fe-Co-2V (Hiperco): Fatigue/Monotonic Testing, Hardness Testing and Fractography
,”
JMSRR
,
6
(
1
), pp.
37
54
.
5.
Mills
,
M. J.
,
Biddlecom
,
J. L.
,
Piñeyro
,
B.
,
Khraishi
,
T. A.
,
Grutzik
,
S. J.
,
Brink
,
A. R.
,
Brake
,
M. R.
, and
Johnson
,
K. L.
,
2022
, “
Characterizing the Fatigue Behavior of Wrought Fe–Co–2V Using Experimental Techniques
,”
ASME J. Eng. Mater. Technol.
,
144
(
3
), p.
031008
.
6.
Rho
,
B. S.
,
Hong
,
H. U.
, and
Nam
,
S. W.
,
2000
, “
The Effect of δ-Ferrite on Fatigue Cracks in 304L Steels
,”
Int. J. Fatigue
,
22
(
8
), pp.
683
690
.
7.
Cao
,
F.
,
Kumar
,
P.
,
Koopman
,
M.
,
Lin
,
C.
,
Fang
,
Z. Z.
, and
Chandran
,
K. R.
,
2015
, “
Understanding Competing Fatigue Mechanisms in Powder Metallurgy Ti–6Al–4V Alloy: Role of Crack Initiation and Duality of Fatigue Response
,”
Mater. Sci. Eng. A
,
630
, pp.
139
145
.
8.
Wang
,
H.
,
Jing
,
H.
,
Zhao
,
L.
,
Han
,
Y.
,
Lv
,
X.
, and
Xu
,
L.
,
2017
, “
Dislocation Structure Evolution in 304L Stainless Steel and Weld Joint During Cyclic Plastic Deformation
,”
Mater. Sci. Eng. A
,
690
, pp.
16
31
.
9.
Chandran
,
K. R.
,
2016
, “
A Physical Model and Constitutive Equations for Complete Characterization of SN Fatigue Behavior of Metals
,”
Acta Mater.
,
121
, pp.
85
103
.
10.
Callister
,
W. D.
,
2007
, “
An Introduction: Material Science and Engineering
,”
New York
,
106
, p.
139
.
11.
Singh
,
P. J.
,
Guha
,
B.
, and
Achar
,
D. R.
,
2003
, “
Fatigue Life Prediction for AISI 304L Butt Welded Joints Having Different Bead Geometry Using Local Stress Approach
,”
Sci. Technol. Weld. Join.
,
8
(
4
), pp.
303
308
.
12.
Yung
,
J. Y.
, and
Lawrence
,
F. V.
,
1985
, “
Analytical and Graphical Aids for the Fatigue Design of Weldments
,”
Fatigue Fract. Eng. Mater. Struct.
,
8
(
3
), pp.
223
241
.
13.
Morrow
,
J.
,
1968
, “
Fatigue Design Handbook
,”
Adv. Eng.
,
4
, pp.
21
29
.
14.
Handbook
,
S. F.
,
1997
,
AE-22
,
Society of Automotive Engineers
,
Warrendale (PA)
.
15.
Pinho da Cruz
,
J. A. M.
,
Costa
,
J. D. M.
,
Borrego
,
L. F. P.
, and
Ferreira
,
J. A. M.
,
2000
, “
Fatigue Life Prediction in AlMgSi1 Lap Joint Weldments
,”
Int. J. Fatigue
,
22
(
7
), pp.
601
610
.
16.
Shiozaki
,
T.
,
Yamaguchi
,
N.
,
Tamai
,
Y.
,
Hiramoto
,
J.
, and
Ogawa
,
K.
,
2018
, “
Effect of Weld Toe Geometry on Fatigue Life of Lap Fillet Welded Ultra-High Strength Steel Joints
,”
Int. J. Fatigue
,
116
, pp.
409
420
.
17.
Hedayati
,
A.
,
Najafizadeh
,
A.
,
Kermanpur
,
A.
, and
Forouzan
,
F.
,
2010
, “
The Effect of Cold Rolling Regime on Microstructure and Mechanical Properties of AISI 304L Stainless Steel
,”
J. Mater. Process. Technol.
,
210
(
8
), pp.
1017
1022
.
18.
Leggatt
,
R. H.
,
2008
, “
Residual Stresses in Welded Structures
,”
Int. J. Press. Vessels Pip.
,
85
(
3
), pp.
144
151
.
19.
Sule
,
J.
,
Ganguly
,
S.
,
Suder
,
W.
, and
Pirling
,
T.
,
2016
, “
Effect of High-Pressure Rolling Followed by Laser Processing on Mechanical Properties, Microstructure and Residual Stress Distribution in Multi-Pass Welds of 304L Stainless Steel
,”
Int. J. Adv. Manuf. Technol.
,
86
(
5
), pp.
2127
2138
.
20.
Hamza
,
S.
,
Boumerzoug
,
Z.
,
Raouache
,
E.
, and
Delaunois
,
F.
,
2019
, “
Simulated Heat Affected Zone in Welded Stainless Steel 304L
,”
Acta Metall. Slov.
,
25
(
3
), pp.
142
149
.
21.
Kartal
,
M.
,
Molak
,
R. M.
,
Turski
,
M.
,
Gungor
,
S.
,
Fitzpatrick
,
M. E.
, and
Edwards
,
L.
,
2007
, “Determination of Weld Metal Mechanical Properties Utilising Novel Tensile Testing Methods,”
Applied Mechanics and Materials
, Vol.
7
, ed.,
Trans Tech Publications Ltd
, pp.
127
132
.
22.
Wilner
,
B.
,
1988
, “
Stress Analysis of Particles in Metals
,”
J. Mech. Phys. Solids
,
36
(
2
), pp.
141
165
.
23.
Pilling
,
J.
,
1989
, “
Superplasticity in Crystalline Solids
,”
Inst. Met.
, pp.
175
178
.
24.
Lee
,
B. J.
, and
Mear
,
M. E.
,
1999
, “
Stress Concentration Induced by an Elastic Spheroidal Particle in a Plastically Deforming Solid
,”
J. Mech. Phys. Solids
,
47
(
6
), pp.
1301
1336
.
25.
Peterson
,
W. D.
,
1997
,
Peterson’s Stress Concentration Factors
,
Wiley
,
Hoboken, NJ
, p.
524
.
26.
Basquin
,
O. H.
,
1910
, “
The Exponential Law of Endurance Tests
,”
Proc. ASTM
,
10
, p.
625e630
.
27.
Chapra
,
S. C.
, and
Canale
,
R. P.
,
2011
,
Numerical Methods for Engineers
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.