Abstract

Superhydrophobic films were successfully grafted on a steel substrate using potentiostatic electrodeposition of nickel followed by treatment with myristic acid (MA) as a low surface energy material. A scanning electron microscope (SEM) was used to investigate the surface topography of the prepared superhydrophobic films. The results revealed that the prepared Ni films modified by myristic acid have micro-nano structures. Fourier transform infrared spectrophotometer (FTIR) and X-ray diffraction (XRD) measurements showed that the steel substrate was coated with nickel film modified with myristic acid. Three different nickel films were prepared: the Ni-MA (I) deposited from pure nickel sulfate bath (1.0 M NiSO4), Ni-MA (II) deposited from pure nickel chloride bath (1.0 M NiCl2. 6H2O), and the third Ni-MA (III) film deposited from Watts bath (0.2 M NiCl2. 6H2O and 0.8M NiSO4). The superhydrophobic Ni-MA (I) film has the highest corrosion resistance, chemical stability, and mechanical abrasion resistance, while Ni-MA (II) film has the lowest properties.

References

1.
Nasser
,
J.
,
Lin
,
J.
,
Zhang
,
L.
, and
Sodano
,
H. A.
,
2020
, “
Laser Induced Graphene Printing of Spatially Controlled Super-Hydrophobic/Hydrophilic Surfaces
,”
Carbon
,
162
(
6
), pp.
570
578
.
2.
Zhang
,
X.
,
Guo
,
Y.
,
Zhang
,
Z.
, and
Zhang
,
P.
,
2013
, “
Self-Cleaning Superhydrophobic Surface Based on Titanium Dioxide Nanowires Combined with Polydimethylsiloxane
,”
Appl. Surf. Sci.
,
284
(
11
), pp.
319
323
.
3.
Jena
,
G.
,
Thinaharan
,
C.
,
George
,
R. P.
, and
Philip
,
J.
,
2020
, “
Robust Nickel-Reduced Graphene Oxide-Myristic Acid Superhydrophobic Coating on Carbon Steel Using Electrochemical Codeposition and Its Corrosion Resistance
,”
Surf. Coat. Technol.
,
397
(
9
), p.
125942
.
4.
Lv
,
Y.
, and
Liu
,
M.
,
2019
, “
Corrosion and Fouling Behaviours of Copper-Based Superhydrophobic Coating
,”
Surf. Eng.
,
35
(
6
), pp.
542
549
.
5.
Yin
,
X.
,
Yu
,
S.
,
Wang
,
K.
,
Cheng
,
R.
, and
Lv
,
Z.
,
2020
, “
Fluorine-Free Preparation of Self-Healing and Anti-Fouling Superhydrophobic Ni3S2 Coating on 304 Stainless Steel
,”
Chem. Eng. J.
,
394
(
3
), p.
124925
.
6.
Ding
,
Y. R.
,
Xue
,
C. H.
,
Fan
,
Q. Q.
,
Zhao
,
L. L.
,
Tian
,
Q. Q.
,
Guo
,
X. J.
,
Zhang
,
J.
,
Jia
,
S. T.
, and
An
,
Q. F.
,
2021
, “
Fabrication of Superhydrophobic Conductive Film at Air/Water Interface for Flexible and Wearable Sensors
,”
Chem. Eng. J.
,
404
(
1
), p.
126489
.
7.
Liu
,
J.
,
Ye
,
L.
,
Sun
,
Y.
,
Hu
,
M.
,
Chen
,
F.
,
Wegner
,
S.
,
Mailänder
,
V.
,
Steffen
,
W.
,
Kappl
,
M.
, and
Butt
,
H.
,
2020
, “
Elastic Superhydrophobic and Photocatalytic Active Films Used as Blood Repellent Dressing
,”
Adv. Mater.
,
32
(
11
), p.
1908008
.
8.
Liang
,
Z.
,
Zhou
,
Z.
,
Zhao
,
L.
,
Dong
,
B.
, and
Wang
,
S.
,
2020
, “
Fabrication of Transparent, Durable and Self-Cleaning Superhydrophobic Coatings for Solar Cells
,”
New J. Chem.
,
44
(
34
), pp.
14481
14489
.
9.
Mohamed
,
M. E.
, and
Nabey
,
B. A. A. E.
,
2021
, “
Fabrication of Durable Superhydrophobic/Oleophilic Cotton Fabric for Highly Efficient Oil/Water Separation
,”
Water Sci. Technol.
,
83
(
1
), pp.
90
99
.
10.
Guo
,
H.
,
Xing
,
Y.
,
Yuan
,
H.
,
Zhang
,
R.
,
Zhang
,
Y.
, and
Deng
,
P.
,
2020
, “
Improving the Anti-Icing Performance of Superhydrophobic Surfaces by Nucleation Inhibitor
,”
Surf. Eng.
,
36
(
6
), pp.
621
627
.
11.
Chen
,
B.
,
Lv
,
Z.
,
Guo
,
F.
, and
Huang
,
Y.
,
2020
, “
Integrated CNTs/SiO2 Nano-Additives on SBS Polymeric Superhydrophobic Coatings for Self-cleaning
,”
Surf. Eng.
,
36
(
6
), pp.
601
606
.
12.
Wang
,
N.
,
Xu
,
S.
,
Qu
,
L.
,
Li
,
X.
, and
Wang
,
Q.
,
2020
, “
Micro-Nano Hierarchical Dendritic Structures for Droplet Curve Manipulation: Implications for Microfluidic Devices
,”
ACS Appl. Nano Mater.
,
3
(
7
), pp.
6524
6530
.
13.
Zhang
,
H.
,
Tuo
,
Y.
,
Wang
,
Q.
,
Jin
,
B.
,
Yin
,
L.
, and
Liu
,
X.
,
2018
, “
Fabrication and Drag Reduction of Superhydrophobic Surface on Steel Substrates
,”
Surf. Eng.
,
34
(
8
), pp.
596
602
.
14.
Pratiwi
,
N.
,
Zulhadjri
,
A.
,
Admi
,
S.
, and
Wellia
,
D. V.
,
2020
, “
Self-Cleaning Material Based on Superhydrophobic Coatings Through an Environmentally Friendly Sol–Gel Method
,”
J. Sol-Gel Sci. Technol.
,
96
(
3
), pp.
669
678
.
15.
Luo
,
G.
,
Jin
,
Z.
,
Dong
,
Y.
,
Huang
,
J.
,
Zhang
,
R.
,
Wang
,
J.
,
Li
,
M.
,
Shen
,
Q.
, and
Zhang
,
L.
,
2018
, “
Preparation and Performance Enhancements of Wear-Resistant, Transparent PU/SiO2 Superhydrophobic Coating
,”
Surf. Eng.
,
34
(
2
), pp.
139
145
.
16.
Xiong
,
M.
,
Ren
,
Z.
, and
Liu
,
W.
,
2020
, “
Fabrication of Superhydrophobic and UV-Resistant Surface on Cotton Fabric via Layer-by-Layer Assembly of Silica-Based UV Absorber
,”
J. Dispers. Sci. Technol.
,
41
(
11
), pp.
1703
1710
.
17.
Seyfi
,
J.
,
Panahi-Sarmad
,
M.
,
OraeiGhodousi
,
A.
,
Goodarzi
,
V.
,
Khonakdar
,
H. A.
,
Asefnejad
,
A.
, and
Shojaei
,
S.
,
2019
, “
Antibacterial Superhydrophobic Polyvinyl Chloride Surfaces via the Improved Phase Separation Process Using Silver Phosphate Nanoparticles
,”
Colloids Surf., B
,
183
(
4
), p.
110438
.
18.
Subramanian
,
B. T.
,
Alla
,
J. P.
,
Essomba
,
J. S.
, and
Nishter
,
N. F.
,
2020
, “
Non-Fluorinated Superhydrophobic Spray Coatings for Oil-Water Separation Applications: An Eco-Friendly Approach
,”
J. Clean. Prod.
,
256
(
5
), p.
120693
.
19.
Uddin
,
M. N.
,
Desai
,
F. J.
, and
Asmatulu
,
E.
,
2020
, “
Biomimetic Electrospun Nanocomposite Fibers From Recycled Polystyrene Foams Exhibiting Superhydrophobicity
,”
Energy, Ecol. Environ.
,
5
(
1
), pp.
1
11
.
20.
Wang
,
H.
,
Zhu
,
Y.
,
Hu
,
Z.
,
Zhang
,
X.
,
Wu
,
S.
,
Wang
,
R.
, and
Zhu
,
Y.
,
2016
, “
A Novel Electrodeposition Route for Fabrication of the Superhydrophobic Surface with Unique Self-Cleaning, Mechanical Abrasion and Corrosion Resistance Properties
,”
Chem. Eng. J.
,
303
(
11
), pp.
37
47
.
21.
Mosayebi
,
E.
,
Azizian
,
S.
, and
Noei
,
N.
,
2020
, “
Preparation of Robust Superhydrophobic Sand by Chemical Vapor Deposition of Polydimethylsiloxane for Oil/Water Separation
,”
Macromol. Mater. Eng.
,
305
(
12
), p.
2000425
.
22.
Hou
,
W.
,
Shen
,
Y.
,
Tao
,
J.
,
Xu
,
Y.
,
Jiang
,
J.
,
Chen
,
H.
, and
Jia
,
Z.
,
2020
, “
Anti-Icing Performance of the Superhydrophobic Surface With Micro-Cubic Array Structures Fabricated by Plasma Etching
,”
Colloids Surf., A
,
586
(
9
), p.
124180
.
23.
Liu
,
R.
,
Chi
,
Z.
,
Cao
,
L.
,
Weng
,
Z.
,
Wang
,
L.
,
Li
,
L.
,
Saeed
,
S.
,
Lian
,
Z.
, and
Wang
,
Z.
,
2020
, “
Fabrication of Biomimetic Superhydrophobic and Anti-icing Ti6Al4 V Alloy Surfaces by Direct Laser Interference Lithography and Hydrothermal Treatment
,”
Appl. Surf. Sci.
,
534
(
12
), p.
147576
.
24.
Mohamed
,
M. E.
, and
Abd-El-Nabey
,
B. A.
,
2020
, “
Facile and Eco-Friendly Method for Fabrication of Superhydrophobic Surface on Copper Metal
,”
ECS J. Solid State Sci. Technol.
,
9
(
6
), p.
061006
.
25.
Celik
,
N.
,
Torun
,
I.
,
Ruzi
,
M.
,
Esidir
,
A.
, and
Onses
,
M. S.
,
2020
, “
Fabrication of Robust Superhydrophobic Surfaces by One-Step Spray Coating: Evaporation Driven Self-Assembly of Wax and Nanoparticles Into Hierarchical Structures
,”
Chem. Eng. J.
,
396
(
9
), p.
125230
.
26.
Zhang
,
C.
,
Liang
,
F.
,
Zhang
,
W.
,
Liu
,
H.
,
Ge
,
M.
,
Zhang
,
Y.
,
Dai
,
J.
, et al
,
2020
, “
Constructing Mechanochemical Durable and Self-healing Superhydrophobic Surfaces
,”
ACS Omega
,
5
(
2
), pp.
986
994
.
27.
Wang
,
N.
,
Wang
,
Q.
,
Xu
,
S.
,
Qu
,
L.
, and
Shi
,
Z.
,
2021
, “
Robust Superhydrophobic Wood Surfaces With Mechanical Durability
,”
Colloids Surf., A
,
608
(
1
), p.
125624
.
28.
Tan
,
X.
,
Wang
,
Y.
,
Huang
,
Z.
,
Sabin
,
S.
,
Xiao
,
T.
,
Jiang
,
L.
, and
Chen
,
X.
,
2021
, “
Facile Fabrication of a Mechanical, Chemical, Thermal, and Long-Term Outdoor Durable Fluorine-Free Superhydrophobic Coating
,”
Adv. Mater. Interfaces
,
8
(
11
), p.
2002209
.
29.
Foorginezhad
,
S.
,
Mohseni-Dargah
,
M.
,
Firoozirad
,
K.
,
Aryai
,
V.
,
Razmjou
,
A.
,
Abbassi
,
R.
,
Garaniya
,
V.
,
Beheshti
,
A.
, and
Asadnia
,
M.
,
2021
, “
Recent Advances in Sensing and Assessment of Corrosion in Sewage Pipelines
,”
Process Saf. Environ. Prot.
,
147
(
3
), pp.
192
213
.
30.
Ye
,
Y.
,
Chen
,
H.
,
Zou
,
Y.
,
Ye
,
Y.
, and
Zhao
,
H.
,
2020
, “
Corrosion Protective Mechanism of Smart Graphene-Based Self-healing Coating on Carbon Steel
,”
Corros. Sci.
,
174
(
9
), p.
108825
.
31.
Zhang
,
Q. H.
,
Hou
,
B. S.
,
Li
,
Y. Y.
,
Zhu
,
G. Y.
,
Liu
,
H. F.
, and
Zhang
,
G. A.
,
2020
, “
Two Novel Chitosan Derivatives as High Efficient Eco-Friendly Inhibitors for the Corrosion of Mild Steel in Acidic Solution
,”
Corros. Sci.
,
164
(
3
), p.
108346
.
32.
Ibrahim
,
M.
,
Kannan
,
K.
,
Parangusan
,
H.
,
Eldeib
,
S.
,
Shehata
,
O.
,
Ismail
,
M.
,
Zarandah
,
R.
, and
Sadasivuni
,
K. K.
,
2020
, “
Enhanced Corrosion Protection of Epoxy/ZnO-NiO Nanocomposite Coatings on Steel
,”
Coat.
,
10
(
8
), p.
783
.
33.
Liu
,
Y.
,
Li
,
S.
,
Zhang
,
J.
,
Liu
,
J.
,
Han
,
Z.
, and
Ren
,
L.
,
2015
, “
Corrosion Inhibition of Biomimetic Super-Hydrophobic Electrodeposition Coatings on Copper Substrate
,”
Corros. Sci.
,
94
(
5
), pp.
190
196
.
34.
Xu
,
W.
,
Rajan
,
K.
,
Chen
,
X. G.
, and
Sarkat
,
D. K.
,
2019
, “
Facile Electrodeposition of Superhydrophobic Aluminum Stearate Thin Films on Copper Substrates for Active Corrosion Protection
,”
Surf. Coat. Technol.
,
364
(
4
), pp.
406
415
.
35.
Yang
,
Z.
,
Liu
,
X.
, and
Tian
,
Y.
,
2019
, “
Fabrication of Super-Hydrophobic Nickel Film on Copper Substrate With Improved Corrosion Inhibition by Electrodeposition Process
,”
Colloids Surf., A
,
560
(
1
), pp.
205
212
.
36.
Olasunkanmi
,
L. O.
, and
Ebenso
,
E. E.
,
2020
, “
Experimental and Computational Studies on Propanone Derivatives of Quinoxalin-6-Yl-4,5-Dihydropyrazole as Inhibitors of Mild Steel Corrosion in Hydrochloric Acid
,”
J. Colloid Interface Sci.
,
561
(
3
), pp.
104
116
.
37.
Zuo
,
X.
,
Li
,
W.
,
Luo
,
W.
,
Zhang
,
X.
,
Qiang
,
Y.
,
Zhang
,
J.
,
Li
,
H.
, and
Tan
,
B.
,
2021
, “
Research of Lilium Brownii Leaves Extract as a Commendable and Green Inhibitor for X70 Steel Corrosion in Hydrochloric Acid
,”
J. Mol. Liq.
,
321
(
1
), p.
114914
.
38.
Jia
,
J.
,
Cheng
,
X.
,
Yang
,
X.
,
Li
,
X.
, and
Li
,
W.
,
2020
, “
A Study for Corrosion Behavior of a New-Type Weathering Steel Used in Harsh Marine Environment
,”
Constr. Build. Mater.
,
259
(
10
), p.
119760
.
39.
Hsissou
,
R.
,
Benhiba
,
F.
,
Dagdag
,
O.
,
El Bouchti
,
M.
,
Nouneh
,
K.
,
Assouag
,
M.
,
Briche
,
S.
,
Zarrouk
,
A.
, and
Elharfi
,
A.
,
2020
, “
Development and Potential Performance of Prepolymer in Corrosion Inhibition for Carbon Steel in 1.0 M HCl: Outlooks From Experimental and Computational Investigations
,”
J. Colloid Interface Sci.
,
574
(
8
), pp.
43
60
.
40.
Pal
,
S.
,
Ji
,
G.
,
Lgaz
,
H.
,
Chung
,
I. M.
, and
Prakash
,
R.
,
2020
, “
Lemon Seeds as Green Coating Material for Mitigation of Mild Steel Corrosion in Acid Media: Molecular Dynamics Simulations, Quantum Chemical Calculations and Electrochemical Studies
,”
J. Mol. Liq.
,
316
(
10
), p.
113797
.
41.
Ding
,
S.
,
Xiang
,
T.
,
Li
,
C.
,
Zheng
,
S.
,
Wang
,
J.
,
Zhang
,
M.
,
Dong
,
C.
, and
Chan
,
W.
,
2017
, “
Fabrication of Self-Cleaning Super-Hydrophobic Nickel/Graphene Hybrid Film With Improved Corrosion Resistance on Mild Steel
,”
Mater. Des.
,
117
(
3
), pp.
280
288
.
42.
Khorsand
,
S.
,
Raeissi
,
K.
, and
Ashrafizadeh
,
F.
,
2014
, “
Corrosion Resistance and Long-Term Durability of Super-Hydrophobic Nickel Film Prepared by Electrodeposition Process
,”
Appl. Surf. Sci.
,
305
(
6
), pp.
498
505
.
43.
Dong
,
S.
,
Yang
,
Y.
,
Liang
,
T.
,
Ma
,
R.
,
Du
,
A.
,
Yang
,
M.
,
Fan
,
Y.
,
Zhao
,
X.
, and
Cao
,
X.
,
2021
, “
Construction and Corrosion Resistance of Ni-B4C Superhydrophobic Composite Coatings on Q235 Steel
,”
Surf. Coat. Technol.
,
422
(
9
), p.
127551
.
44.
Zhang
,
F.
,
Yao
,
Z.
,
Moliar
,
O.
,
Tao
,
X.
, and
Yang
,
C.
,
2020
, “
Nanocrystalline Ni Coating Prepared by a Novel Electrodeposition
,”
J. Alloys Compd.
,
830
(
7
), p.
153785
.
45.
Yang
,
Z.
,
Liu
,
X.
, and
Tian
,
Y.
,
2019
, “
Hybrid Laser Ablation and Chemical Modification for Fast Fabrication of Bio-Inspired Super-Hydrophobic Surface With Excellent Self-Cleaning, Stability and Corrosion Resistance
,”
J. Bionic Eng.
,
16
(
1
), pp.
13
26
.
46.
Chen
,
Z.
,
Li
,
F.
,
Hao
,
L.
,
Chen
,
A.
, and
Kong
,
Y.
,
2011
, “
One-Step Electrodeposition Process to Fabricate Cathodic Superhydrophobic Surface
,”
Appl. Surf. Sci.
,
258
(
4
), pp.
1395
1398
.
47.
Manoj
,
T. P.
,
Rasitha
,
T. P.
,
Vanithakumari
,
S. C.
,
Anandkumar
,
B.
,
George
,
R. P.
, and
Philip
,
J.
,
2020
, “
A Simple, Rapid and Single Step Method for Fabricating Superhydrophobic Titanium Surfaces With Improved Water Bouncing and Self Cleaning Properties
,”
Appl. Surf. Sci.
,
512
(
5
), p.
145636
.
48.
Chen
,
Z.
,
Hao
,
L.
, and
Chen
,
C.
,
2012
, “
A Fast Electrodeposition Method for Fabrication of Lanthanum Superhydrophobic Surface With Hierarchical Micro-nanostructures
,”
Colloids Surf., A
,
401
(
5
), pp.
1
7
.
49.
Pramono
,
E.
,
Utomo
,
S. B.
,
Wulandari
,
V.
, and
Clegg
,
F.
,
2016
, “
FTIR Studies on the Effect of Concentration of Polyethylene Glycol on Polimerization of Shellac
,”
J. Phys. Conf. Ser.
,
776
(
1
), p.
012053
.
50.
Zhou
,
J.
, and
Wang
,
H.
,
2003
, “
The Physical Meanings of 5 Basic Parameters for an X-Ray Diffraction Peak and Their Application
,”
Chin. J. Geochem.
,
22
(
1
), pp.
38
44
.
51.
Liu
,
Q.
,
Chen
,
D.
, and
Kang
,
Z.
,
2015
, “
One-Step Electrodeposition Process to Fabricate Corrosion Resistant Superhydrophobic Surface on Magnesium Alloy
,”
ACS Appl. Mater. Interfaces
,
7
(
3
), pp.
1859
1867
.
52.
Tan
,
C.
,
Li
,
Q.
,
Cai
,
P.
,
Yang
,
N.
, and
Xi
,
Z.
,
2015
, “
Fabrication of Color-Controllable Superhydrophobic Copper Compound Coating With Decoration Performance
,”
Appl. Surf. Sci.
,
328
(
2
), pp.
623
631
.
53.
Fetouh
,
H. A.
,
Abd-El-Nabey
,
B.
,
Goher
,
Y. M.
, and
Karam
,
M. S.
,
2018
, “
An Electrochemical Investigation in the Anticorrosive Properties of Silver Nanoparticles for the Acidic Corrosion of Aluminium
,”
J. Electrochem.
,
24
(
1
), pp.
89
100
.
54.
Forooshani
,
H. M.
,
Aliofkhazraei
,
M.
, and
Rouhaghdam
,
A. S.
,
2017
, “
Superhydrophobic Aluminum Surfaces by Mechanical/Chemical Combined Method and Its Corrosion Behavior
,”
J. Taiwan Inst. Chem. Eng.
,
72
(
3
), pp.
220
235
.
55.
Liu
,
Q.
, and
Kang
,
Z.
,
2014
, “
One-Step Electrodeposition Process to Fabricate Superhydrophobic Surface With Improved Anticorrosion Property on Magnesium Alloy
,”
Mater. Lett.
,
137
(
12
), pp.
210
213
.
56.
El nabey
,
A.
,
Goher
,
B. A.
,
Fetouh
,
Y. M.
,
and Karam
,
H. A.
, and
S
,
M.
,
2015
, “
Anticorrosive Properties of Chitosan for the Acid Corrosion of Aluminium
,”
Port. Electrochim. Acta
,
33
(
4
), pp.
231
239
.
You do not currently have access to this content.