Abstract

Magnesium alloys are now widely used for various purposes due to their unique properties despite the significant disadvantage associated with low corrosion resistance. The plasma-electrolytic oxidation (PEO), which allows the formation of ceramic coatings on the surface of magnesium alloys, is the most advanced and effective method for their protection. But first, PEO process of magnesium alloys has some difficulties, and second, PEO coatings affect the thermophysical characteristics of the modified materials; in particular, they reduce thermal diffusivity. The presented work is devoted to the development of the technological parameters for formation of protective coating on the ultralight alloy Mg–8Li–1Al–0.6Ce–0.3Y by the PEO method. The results analyses of electrolytes acidity and specific electrical conductivity before and after PEO process and also investigation data of the coatings structure and surface morphology are presented. An integral assessment of the ability of thermal diffusivity and corrosion resistance of the modified alloy was made. Studying of protective and thermophysical characteristics of the obtained coating showed that it provides a sufficiently high corrosion protection, despite the relatively small thickness, and the presence of pores and slightly (not more than 5%) reduces the thermal diffusivity of the magnesium ultralight alloy.

References

1.
Elkin
,
F. M.
,
2007
, “
Topical Problems of Material Science, Production and Application of Magnesium Alloys
,”
Technol. Light Alloys
,
1
, pp.
5
18
.
2.
Borisov
,
A. M.
,
Krit
,
B. L.
,
Lyudin
,
V. B.
,
Morozova
,
N. V.
,
Suminov
,
I. V.
,
Tsyganov
,
D. I.
, and
Apelfeld
,
A. V.
,
2013
,”
Technologies of live systems
,
6
.
3.
Zhao
,
L.
,
Cui
,
C.
,
Wang
,
Q.
, and
Bu
,
S.
,
2010
, “
Growth Characteristics and Corrosion Resistance of Micro-Arc Oxidation Coating on Pure Magnesium for Biomedical Applications
,”
Corros. Sci.
,
52
(
7
), pp.
2228
2234
.
4.
Shilov
,
A. M.
,
Melnik
,
M. V.
,
Osia
,
A. O.
,
Sviridova
,
A. Y.
, and
Glodnov
,
D. A.
,
2008
,” “
Role of Magnesium Deficiency in Pathogenesis of Metabolic Syndrome
,”
Russ. Med. J.
,
21
, pp.
1439
1444
.
5.
Volkova
,
E. F.
, and
Antipov
,
V. V.
,
2012
,
All Materials. Encyclopedic Reference Manual
,
5
.
6.
Solntsev
,
Y. P.
,
2003
,
Metals and Alloys. Reference Book
,
ANO NGO Professional
,
St. Petersburg
.
7.
Wu
,
R.
,
Yan
,
Y.
,
Wang
,
G.
,
Murr
,
L. E.
,
Han
,
W.
,
Zhang
,
Z.
, and
Zhang
,
M.
,
2015
, “
Recent Progress in Magnesium–Lithium Alloys
,”
Int. Mater. Rev.
,
60
(
2
), pp.
2
.
8.
Betsofen
,
S. J.
,
Osintsev
,
O. E.
,
Grushin
,
I. A.
,
Petrov
,
A. A.
, and
Spiransky
,
K. A.
,
2018
, “
Influence of Alloying Elements on Deformation Mechanism and Texture of Magnesium Alloys
,”
Deform. Fract. Mater.
,
8
, pp.
2
17
.
9.
Ji
,
B.Q.
,
Ma
,
Y.
,
Wu
,
R.
,
Zhang
,
J.
,
Hou
,
L.
, and
Zhang
,
M.
,
2019
, “
Effect of Y and Ce Addition on Microstructures and Mechanical Properties of LZ91 Alloys
,”
J. Alloys Compd.
,
800
, pp.
72
80
.
10.
Zhong
,
F.
,
Wu
,
H.
,
Jiao
,
Y. L.
,
Wu
,
R.
,
Zhang
,
J.
,
Hou
,
L.
, and
Zhang
,
M.
,
2020
, “
Effect of Y and Ce on the Microstructure, Mechanical Properties and Anisotropy of As-Rolled Mg-8Li-1Al Alloy
,”
J. Mater. Sci. Technol.
,
39
, pp.
124
134
.
11.
Frolov
,
A. V.
,
Mukhina
,
I. Y.
,
Leonov
,
A. A.
, and
Uridiya
,
Z. P.
,
2016
, “
An influence of Rare-Earth Metals Doping on Properties and Structure of the Experimental Mg–Zr–Zn–Y–Nd Casting Magnesium Alloy
,”
Proc. VIAM
,
2
(
3
), pp.
3
.
12.
Xie
,
J.
,
Zhang
,
J.
,
You
,
Z.
,
Liu
,
S.
,
Guan
,
K.
,
Wu
,
R.
,
Wang
,
J.
, and
Feng
,
J.
, “
Towards Developing Mg Alloys With Simultaneously Improved Strength and Corrosion Resistance via RE Alloying
,”
J. Magnesium Alloys.
,
9
(
1
), pp.
41
56
.
13.
Suminov
,
I. V.
,
Belkin
,
P. N.
,
Apelfeld
,
A. V.
,
Lyudin
,
V. B.
,
Krit
,
B. L.
, and
Borisov
,
A. M.
,
2011
,
Plasma-Electrolytic Surface Modification of Metals and Alloys
,
Tekhnosfera
,
Moscow
.
14.
Suminov
,
I. V.
,
Apelfeld
,
A. V.
,
Lyudin
,
V. B.
,
Krit
,
B. L.
, and
Borisov
,
A. M.
,
2005
,
Microarc Oxidation
,
Ekomet
,
Moscow
.
15.
Apelfeld
,
A.
,
Krit
,
B.
,
Ludin
,
V.
,
Morozova
,
N.
,
Vladimirov
,
B.
, and
Wu
,
R. Z.
,
2017
, “
The Characterization of Plasma Electrolytic Oxidation Coatings on AZ41 Magnesium Alloy
,”
Surf. Coat. Technol.
,
322
, pp.
127
133
.
16.
Arrabal
,
R.
,
Matykina
,
E.
,
Hashimoto
,
T.
,
Skeldon
,
P.
, and
Thompson
,
G. E.
,
2009
, “
Characterization of AC PEO Coatings on Magnesium Alloys
,”
Surf. Coat. Technol.
,
203
(
16
), pp.
2207
2220
.
17.
Lv
,
G.-H.
,
Chen
,
H.
,
Li
,
L.
,
Niu
,
E.-W.
,
Pang
,
H.
,
Zou
,
B.
, and
Yang
,
S.-Z.
,
2009
, “
Investigation of Plasma Electrolytic Oxidation Process on AZ91D Magnesium Alloy
,”
Curr. Appl. Phys.
,
9
(
1
), pp.
126
130
.
18.
Vladimirov
,
B. V.
,
Krit
,
B. L.
,
Lyudin
,
V. B.
,
Morozova
,
N. V.
,
Rossiiskaya
,
A. D.
,
Suminov
,
I. V.
, and
Epel’feld
,
A. V.
,
2014
,”
Microarc Oxidation of Magnesium Alloys: A Review
Surf. Eng. Appl. Electrochem.
,
50
(
3
), pp.
195
232
.
19.
Barati Darband
,
G.
,
Aliofkhazraei
,
M.
,
Hamghalam
,
P.
, and
Valizade
,
N.
,
2017
, “
Plasma Electrolytic Oxidation of Magnesium and Its Alloys: Mechanism, Properties and Applications
,”
J. Magnesium Alloys
,
5
(
1
), pp.
74
132
.
20.
Apelfeld
,
A. V.
,
Belkin
,
P. N.
,
Borisov
,
A. M.
,
Vasin
,
V. A.
,
Krit
,
B. L.
,
Ludin
,
V. B.
,
Somov
,
O. V.
,
Sorokin
,
V. A.
,
Suminov
,
I. V.
, and
Franzkevich
,
V. P.
,
2017
,
Modern Technologies of Materials Surface Modification
,
Renome
,
Moscow, StPetersburg
.
21.
Qian
,
B.-Y.
,
Miao
,
W.
,
Qiu
,
M.
,
Gao
,
F.
,
Hu
,
D.-H.
,
Sun
,
J.-F.
,
Wu
,
R.-Z.
,
Krit
,
B.
, and
Betsofen
,
S.
,
2019
, “
Influence of Voltage on the Corrosion and Wear Resistance of Micro-arc Oxidation Coating on Mg–8Li–2Ca Alloy
,”
Acta Metall. Sin.
,
32
(
2
), pp.
194
204
.
22.
Bordbar-Khiabani
,
A.
,
Yarmand
,
B.
, and
Mozafari
,
M.
,
2019
, “
Enhanced Corrosion Resistance and In-vitro Biodegradation of Plasma Electrolytic Oxidation Coatings Prepared on AZ91 Mg Alloy Using ZnO Nanoparticles-Incorporated Electrolyte
,”
Surf. Coat. Technol.
,
360
, pp.
153
171
.
23.
Peitao
,
G.
,
Mingyang
,
T.
, and
Chaoyang
,
Z.
,
2019
, “
Tribological and Corrosion Resistance Properties of Graphite Composite Coating on AZ31 Mg Alloy Surface Produced by Plasma Electrolytic Oxidation
,”
Surf. Coat. Technol.
,
359
, pp.
197
205
.
24.
Li
,
Z.
,
Yu
,
Q.
,
Zhang
,
C.
,
Liu
,
Y.
,
Liang
,
J.
,
Wang
,
D.
, and
Zhou
,
F.
,
2019
, “
Synergistic effect of Hydrophobic Film and Porous MAO Membrane Containing Alkynol Inhibitor for Enhanced Corrosion Resistance of Magnesium Alloy
,”
Surf. Coat. Technol.
,
357
, pp.
515
525
.
25.
Muhaffel
,
F.
, and
Cimenoglu
,
H.
,
2019
, “
Development of Corrosion and Wear Resistant Micro-arc Oxidation Coating on a Magnesium Alloy
,”
Surf. Coat. Technol.
,
357
, pp.
822
832
.
26.
An
,
L.
,
Ma
,
Y.
,
Liu
,
Y.
,
Sun
,
L.
,
Wang
,
S.
, and
Wang
,
Z.
,
2018
, “
Effects of Additives, Voltage and Their Interactions on PEO Coatings Formed on Magnesium Alloys
,”
Surf. Coat. Technol.
,
354
, pp.
226
235
.
27.
Atapour
,
M.
,
Blawert
,
C.
, and
Zheludkevich
,
M. L.
,
2019
, “
The Wear Characteristics of CeO2 Containing Nanocomposite Coating Made by Aluminate-Based PEO on AM 50 Magnesium Alloy
,”
Surf. Coat. Technol.
,
357
, pp.
626
637
.
28.
Zhang
,
D.
,
Ge
,
Y.
,
Liu
,
G.
,
Gao
,
F.
, and
Li
,
P.
,
2018
, “
Investigation of Tribological Properties of Micro-arc Oxidation Ceramic Coating on Mg Alloy Under Dry Sliding Condition
,”
Ceram. Int.
,
44
(
14
), pp.
16164
16172
.
29.
Vereschaka
,
A.
,
Tabakov
,
V.
,
Grigoriev
,
S.
,
Aksenenko
,
A.
,
Sitnikov
,
N.
,
Oganyan
,
G.
,
Seleznev
,
A.
, and
Shevchenko
,
S.
,
2019
, “
Effect of Adhesion and the Wear-Resistant Layer Thickness Ratio on Mechanical and Performance Properties of ZrN - (Zr,Al,Si)N Coatings
,”
Surf. Coat. Technol.
,
357
, pp.
218
234
.
30.
Gunter
,
V. E.
,
2010
,
Medical Materials and Implants With Shape Memory
,
MIC
,
Tomsk
.
31.
Tsyganov
,
D. I.
,
2011
,
Cryomedicine: Processes and Apparatus
,
Sines-press
,
Moscow
.
32.
How Keronite is Improving Material Technologies in the Defence Sector
,
2020
. https://blog.keronite.com/how-keronite-is-improving-material-technologies-in-the-defence-sector
33.
Shahri
,
Z.
,
Allahkaram
,
S. R.
,
Soltani
,
R.
, and
Jafari
,
H.
,
2020
, “
Optimization of Plasma Electrolyte Oxidation Process Parameters for Corrosion Resistance of Mg Alloy
,”
J. Magnesium Alloys
,
8
(
2
), pp.
431
440
.
34.
Rakoch
,
A. G.
,
Dub
,
A. V.
, and
Gladkova
,
A. A.
,
2012
,
Anodization of Light Alloys Under Various Electric Modes. Plasma-electrolytic Nanotechnology
,
Old Basmannaya, Moscow
.
35.
Rahstab
,
A. G.
, and
Brostrom
,
V. V.
,
1976
,
Metalworker's Handbook
, Vol. 2, 3rd ed., Mechanical Engineering, Moscow, p.
717
.
36.
Rakoch
,
A. G.
,
Gladkova
,
A. A.
,
Linn
,
Z.
, and
Strekalina
,
D. M.
,
2015
, “
The Evidence of Cathodic Micro-discharges During Plasma Electrolytic Oxidation of Light Metallic Alloys and Micro-discharge Intensity Depending on pH of the Electrolyte
,”
Surf. Coat. Technol.
,
269
, pp.
138
144
.
37.
Miheev
,
A. E.
,
Girn
,
A. V.
,
Alyakretsky
,
R. V.
,
Ravodina
,
D. V.
, and
Trushkina
,
T. V.
,
2014
,”
Siberian J. Sci. Technol.
,
2
.
38.
Savinkina
,
A. L.
, and
Chugunov
,
S. N.
,
2017
,
Bulletin of the Penza State University
,
2
.
39.
Rahstadt
,
A. G.
, and
Brostrom
,
V. A.
,
1976
,
Metalworker's Handbook
,
Mechanical Engineering
,
Moscow
.
40.
ISO 9227:2017
,
2017
,
Corrosion Tests in Artificial Atmospheres—Salt Spray Tests
,
4th ed., ISO
,
Geneva
.
41.
Russian Industry Standard 92-1346-83
,
1983
,
Metals, Alloys, Metal and Non-metallic Inorganic Coatings. Methods for Assessing Corrosion Damage
,
Gosstandart
,
Moscow
.
42.
Cheng
,
Y.
,
Peng
,
Z.
,
Wu
,
X.
,
Cao
,
J. H.
,
Skeldon
,
P.
, and
Thompson
,
G. E.
,
2015
, “
A Comparison of Plasma Electrolytic Oxidation of Ti-6Al-4V and Zircaloy-2 Alloys in a Silicate-Hexametaphosphate Electrolyte
,”
Elecrochim. Acta
,
165
, pp.
301
313
.
You do not currently have access to this content.