Abstract

Equiatomic TiNi alloy composites, reinforced with 0, 5, 10, and 15 vol% ZrO2, were synthesized using conventional sintering approach. Equiatomic TiNi pre-alloyed powder and ZrO2 powder were mixed in planetary ball mill for 6 h followed by cold compaction and pressure-less sintering, respectively. The sintered density was found to vary inversely with the addition of ZrO2 content. The X-ray diffraction (XRD) spectra have shown the formation of multiple-phases which were resulted from the decomposition of the B19′ and B2 phases of the equiatomic TiNi alloy due to the addition of ZrO2 and higher diffusion rate of Ni than that of Ti in the alloy composite. An increase in hardness was noted due to the addition of ZrO2, measured by micro and nanoindentation techniques. Potentiodynamic polarization scan revealed a 10% decrease in the corrosion rate of the composite containing 10 vol% ZrO2. Electrochemical impedance spectroscopy (EIS) results indicated an increase in passive layer resistance (Rcoat) due to the increase in charge transfer resistance (Rct) caused by the reduced leaching of ions from the surface.

References

1.
Es-Souni
,
M.
, and
Fischer-Brandies
,
H.
,
2002
, “
On the Properties of Two Binary NiTi Shape Memory Alloys. Effects of Surface Finish on the Corrosion Behaviour and In Vitro Biocompatibility
,”
Biomaterials
,
23
(
14
), pp.
2887
2894
.
2.
Ferreira
,
M. d. A.
,
Luersen
,
M. A.
, and
Borges
,
P. C.
,
2012
, “
Nickel-Titanium Alloys: A Systematic Review
,”
Dental Press J. Orthod.
,
17
(
3
), pp.
71
82
.
3.
Velmurugan
,
C.
,
Senthilkumar
,
V.
,
Dinesh
,
S.
, and
Arulkirubakaran
,
D.
,
2018
, “
Machining of NiTi-Shape Memory Alloys—A Review
,”
Mach. Sci. Technol.
,
22
(
3
), pp.
355
401
.
4.
Duerig
,
T. W.
, and
Pelton
,
A. R.
,
1994
, “
Ti-Ni Shape Memory Alloys
,”
Mater. Prop. Handb. Titanium Alloys
, pp.
1035
1048
.
5.
Mohd Jani
,
J.
,
Leary
,
M.
,
Subic
,
A.
, and
Gibson
,
M. A.
,
2014
, “
A Review of Shape Memory Alloy Research, Applications and Opportunities
,”
Mater. Des.
,
56
, pp.
1078
1113
.
6.
Sreekumar
,
M.
,
Nagarajan
,
T.
,
Singaperumal
,
M.
,
Zoppi
,
M.
, and
Molfino
,
R.
,
2007
, “
Critical Review of Current Trends in Shape Memory Alloy Actuators for Intelligent Robots
,”
Ind. Rob.
,
34
(
4
), pp.
285
294
.
7.
Yang
,
F.
,
Kovarik
,
L.
,
Phillips
,
P. J.
,
Noebe
,
R. D.
, and
Mills
,
M. J.
,
2012
, “
Characterizations of Precipitate Phases in a Ti-Ni-Pd Alloy
,”
Scr. Mater.
,
67
(
2
), pp.
145
148
.
8.
Gou
,
L.
,
Liu
,
Y.
, and
Ng
,
T. Y.
,
2014
, “
An Investigation on the Crystal Structures of Ti50Ni50-xCux Shape Memory Alloys Based on Density Functional Theory Calculations
,”
Intermetallics
,
53
, pp.
20
25
.
9.
Zheng
,
Y. F.
,
Zhang
,
B. B.
,
Wang
,
B. L.
,
Wang
,
Y. B.
,
Li
,
L.
,
Yang
,
Q. B.
, and
Cui
,
L. S.
,
2011
, “
Introduction of Antibacterial Function Into Biomedical TiNi Shape Memory Alloy by the Addition of Element Ag
,”
Acta Biomater.
,
7
(
6
), pp.
2758
2767
.
10.
Hsieh
,
S. F.
,
Chen
,
S. L.
,
Lin
,
H. C.
,
Lin
,
M. H.
,
Huang
,
J. H.
, and
Lin
,
M. C.
,
2010
, “
A Study of TiNiCr Ternary Shape Memory Alloys
,”
J. Alloys Compd.
,
494
(
1–2
), pp.
155
160
.
11.
Kayani
,
S. H.
,
Imran Khan
,
M.
,
Khalid
,
F. A.
,
Kim
,
H. Y.
, and
Miyazaki
,
S.
,
2015
, “
Precipitation Behavior of Thermo-Mechanically Treated Ti50Ni20Au20Cu10 High-Temperature Shape-Memory Alloy
,”
Shape Mem. Superelasticity
,
2
(
1
), pp.
29
36
.
12.
Lin
,
H. C.
,
Lin
,
K. M.
,
Chang
,
S. K.
, and
Lin
,
C. S.
,
1999
, “
A Study of TiNiV Ternary Shape Memory Alloys
,”
J. Alloys Compd.
,
284
(
1–2
), pp.
213
217
.
13.
Tong
,
Y. X.
,
Jiang
,
P. C.
,
Chen
,
F.
,
Tian
,
B.
,
Li
,
L.
,
Zheng
,
Y. F.
,
Gunderov
,
D. V.
, and
Valiev
,
R. Z.
,
2014
, “
Microstructure and Martensitic Transformation of an Ultrafine-Grained TiNiNb Shape Memory Alloy Processed by Equal Channel Angular Pressing
,”
Intermetallics
,
49
, pp.
81
86
.
14.
Strnadel
,
B.
,
Ohashi
,
S.
,
Ohtsuka
,
H.
,
Ishihara
,
T.
, and
Miyazaki
,
S.
,
1995
, “
Cyclic Stress-Strain Characteristics of TiNi and TiNiCu Shape Memory Alloys
,”
Mater. Sci. Eng., A
,
202
(
1–2
), pp.
148
156
.
15.
Canadinc
,
D.
,
Trehern
,
W.
,
Ozcan
,
H.
,
Hayrettin
,
C.
,
Karakoc
,
O.
,
Karaman
,
I.
,
Sun
,
F.
, and
Chaudhry
,
Z.
,
2017
, “
On the Deformation Response and Cyclic Stability of Ni50Ti35Hf15 High Temperature Shape Memory Alloy Wires
,”
Scr. Mater.
,
135
, pp.
92
96
.
16.
Khan
,
M. I.
,
Kim
,
H.
, and
Miyazaki
,
S.
,
2015
, “
A Review of TiNiPdCu Alloy System for High Temperature Shape Memory Applications
,”
Shape Mem. Superelasticity
,
1
(
2
), pp.
85
106
.
17.
Tadayyon
,
G.
,
Mazinani
,
M.
,
Guo
,
Y.
,
Zebarjad
,
S. M.
,
Tofail
,
S. A. M.
, and
Biggs
,
M. J.
,
2016
, “
The Effect of Annealing on the Mechanical Properties and Microstructural Evolution of Ti-Rich NiTi Shape Memory Alloy
,”
Mater. Sci. Eng. A
,
662
, pp.
564
577
.
18.
Wang
,
Y.
,
Zheng
,
Y.
,
Cai
,
W.
, and
Zhao
,
L.
,
May 1999
, “
The Tensile Behavior of Ti36Ni49Hf15 High Temperature Shape Memory Alloy
,”
Scr. Mater.
,
40
(
12
), pp.
1327
1331
.
19.
Jiang
,
D.
,
Zheng
,
L.
,
Zhou
,
L.
,
Pan
,
L.
,
Tang
,
X.
, and
Zhang
,
H.
,
2012
, “
High Temperature Tensile Properties of Directionally Solidified Ni-43Ti-4Al-2Nb-2Hf Alloy
,”
Rare Met.
,
31
(
4
), pp.
328
331
.
20.
Ramos
,
A. P.
,
de Castro
,
W. B.
,
Costa
,
J. D.
, and
de Santana
,
R. A. C.
,
2019
, “
Influence of Zirconium Percentage on Microhardness and Corrosion Resistance of Ti50 Ni50-xZrx Shape Memory Alloys
,”
Mater. Res.
,
22
(
4
).
21.
Lethabane
,
M. L.
,
Olubambi
,
P. A.
, and
Chikwanda
,
H. K.
,
2015
, “
Corrosion Behaviour of Sintered Ti-Ni-Cu-Nb in 0.9% NaCl Environment
,”
J. Mater. Res. Technol.
,
4
(
4
), pp.
367
376
.
22.
Xu
,
Q.
, and
Liu
,
F.
,
2012
, “
Transformation Behavior and Shape Memory Effect of Ti50−x Ni48Fe2Nb x Alloys by Aging Treatment
,”
Rare Met.
,
31
(
4
), pp.
311
317
.
23.
Bakshi
,
S. R.
,
Lahiri
,
D.
, and
Agarwal
,
A.
,
2010
, “
Carbon Nanotube Reinforced Metal Matrix Composites—A Review
,”
Int. Mater. Rev.
,
55
(
1
), pp.
41
64
.
24.
Farvizi
,
M.
,
Ebadzadeha
,
T.
,
Vaezib
,
M. R.
,
Yoonc
,
E. Y.
,
Kimc
,
Y. J.
,
Kimd
,
H. S.
, and
Simchie
,
A.
,
2014
, “
Microstructural Characterization of HIP Consolidated NiTi-Nano Al2O3 Composites
,”
J. Alloys Compd.
,
606
, pp.
21
26
.
25.
Johansen
,
K.
,
Voggenreiter
,
H.
, and
Eggeler
,
G.
,
1999
, “
On the Effect of TiC Particles on the Tensile Properties and on the Intrinsic Two Way Effect of NiTi Shape Memory Alloys Produced by Powder Metallurgy
,”
Mater. Sci. Eng. A
,
275
, pp.
410
414
.
26.
Mari
,
D.
, and
Dunand
,
D. C.
,
1995
, “
NiTi and NiTi-TiC Composites: Part I. Transformation and Thermal Cycling Behavior
,”
Metall. Mater. Trans. A
,
26
(
November
), pp.
2833
2847
.
27.
Akmal
,
M.
,
Raza
,
A.
,
Khan
,
M. M.
,
Khan
,
M. I.
, and
Hussain
,
M. A.
,
2016
, “
Effect of Nano-Hydroxyapatite Reinforcement in Mechanically Alloyed NiTi Composites for Biomedical Implant
,”
Mater. Sci. Eng., C
,
68
, pp.
30
36
.
28.
Hu
,
L.
,
Kothalkar
,
A.
,
Proust
,
G.
,
Karaman
,
I.
, and
Radovic
,
M.
,
2014
, “
Fabrication and Characterization of NiTi/Ti3SiC2 and NiTi/Ti2AlC Composites
,”
J. Alloys Compd.
,
610
, pp.
635
644
.
29.
Lyon
,
D.
,
Chevalier
,
J.
,
Gremillard
,
L.
, and
Cam
,
C. A. D.
,
2011
, “
Zirconia as a Biomaterial
,”
Compr. Biomater.
,
20
, pp.
95
108
.
30.
Manicone
,
P. F.
,
Rossi Iommetti
,
P.
, and
Raffaelli
,
L.
,
2007
, “
An Overview of Zirconia Ceramics: Basic Properties and Clinical Applications
,”
J. Dent.
,
35
(
11
), pp.
819
826
.
31.
Neubauer
,
E.
,
Kitzmantel
,
M.
,
Hulman
,
M.
, and
Angerer
,
P.
,
Dec. 2010
, “
Potential and Challenges of Metal-Matrix-Composites Reinforced With Carbon Nanofibers and Carbon Nanotubes
,”
Compos. Sci. Technol.
,
70
(
16
), pp.
2228
2236
.
32.
Farvizi
,
M.
,
Akbarpour
,
M. R.
,
Ahn
,
D. H.
, and
Kim
,
H. S.
,
2016
, “
Compressive Behavior of NiTi-Based Composites Reinforced With Alumina Nanoparticles
,”
J. Alloys Compd.
,
688
, pp.
803
807
.
33.
Obadele
,
B. A.
,
Ige
,
O. O.
, and
Olubambi
,
P. A.
,
2017
, “
Fabrication and Characterization of Titanium-Nickel-Zirconia Matrix Composites Prepared by Spark Plasma Sintering
,”
J. Alloys Compd.
,
710
, pp.
825
830
.
34.
Kim
,
J. K.
, and
Rohatgi
,
P. K.
,
Apr. 2000
, “
Nucleation on Ceramic Particles in Cast Metal-Matrix Composites
,”
Metall. Mater. Trans. A
,
31
(
4
), pp.
1295
1304
.
35.
Xu
,
B. S.
,
Wang
,
H. D.
,
Dong
,
S. Y.
,
Jiang
,
B.
, and
Tu
,
W. Y.
,
2005
, “
Electrodepositing Nickel Silica Nano-Composites Coatings
,”
Electrochem. Commun.
,
7
(
6
), pp.
572
575
.
36.
Berlia
,
R.
,
Punith Kumar
,
M. K.
, and
Srivastava
,
C.
,
2015
, “
Electrochemical Behavior of Sn-Graphene Composite Coating
,”
RSC Adv.
,
5
(
87
), pp.
71413
71418
.
37.
Otsuka
,
K.
, and
Ren
,
X.
,
2005
, “
Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys
,”
Prog. Mater. Sci.
,
50
(
5
), pp.
511
678
.
38.
Alqarni
,
N. D.
,
Wysocka
,
J.
,
El-Bagoury
,
N.
,
Ryl
,
J.
,
Amin
,
M. A.
, and
Boukherroub
,
R.
,
2018
, “
Effect of Cobalt Addition on the Corrosion Behavior of Near Equiatomic NiTi Shape Memory Alloy in Normal Saline Solution: Electrochemical and XPS Studies
,”
RSC Adv.
,
8
(
34
), pp.
19289
19300
.
39.
Fadlallah
,
S. A.
,
El-Bagoury
,
N.
,
Gad El-Rab
,
S. M. F.
,
Ahmed
,
R. A.
, and
El-Ousamii
,
G.
,
2014
, “
An Overview of NiTi Shape Memory Alloy: Corrosion Resistance and Antibacterial Inhibition for Dental Application
,”
J. Alloys Compd.
,
583
, pp.
455
464
.
40.
Majidi
,
H.
,
Aliofkhazraei
,
M.
,
Karimzadeh
,
A.
, and
Sabour Rouhaghdam
,
A.
,
2017
, “
Optimising Number of Layers of Pulse Electrodeposited Ni–Al2O3 Multilayer Nanocomposite Coatings for Corrosion and Wear Resistance
,”
Can. Metall. Q.
,
56
(
2
), pp.
179
189
.
41.
Hou
,
K. H.
, and
Chen
,
Y. C.
,
2011
, “
Preparation and Wear Resistance of Pulse Electrodeposited Ni-W/Al2O3 Composite Coatings
,”
Appl. Surf. Sci.
,
257
(
15
), pp.
6340
6346
.
42.
Niu
,
Q.
,
Li
,
Z.
,
Liu
,
G.
, and
Ran
,
C.
,
2018
, “
Characterization and Properties of Ni-W-ZrO2 Composite Coating by Ultrasonic Electrodeposition
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
301
(
1
).
43.
Gyawali
,
G.
,
Joshi
,
B.
,
Tripathi
,
K.
, and
Lee
,
S. W.
,
2016
, “
Preparation of Ni–W–Si3N4 Composite Coatings and Evaluation of Their Scratch Resistance Properties
,”
Ceram. Int.
,
42
(
2
), pp.
3497
3503
.
44.
Li
,
H.
,
He
,
Y.
,
He
,
T.
,
Fan
,
Y.
,
Yang
,
Q.
, and
Zhan
,
Y. Q.
,
2016
, “
The Influence of Pulse Plating Parameters on Microstructure and Properties of Ni-W-Si3N4 Nanocomposite Coatings
,”
Ceram. Int.
,
42
(
16
), pp.
18380
18392
.
45.
Peng
,
Y.
,
Peng
,
Z.
,
Ren
,
X.
,
Rong
,
H.
,
Wang
,
C.
,
Fu
,
Z.
,
Qi
,
L.
, and
Miao
,
H.
,
2012
, “
Effect of SiC Nano-Whisker Addition on TiCN-based Cermets Prepared by Spark Plasma Sintering
,”
Int. J. Refract. Met. Hard Mater.
,
34
, pp.
36
40
.
46.
Noguchi
,
T.
,
Magario
,
A.
,
Fukazawa
,
S.
,
Shimizu
,
S.
,
Beppu
,
J.
, and
Seki
,
M.
,
2004
, “
Carbon Nanotube/Aluminium Composites With Uniform Dispersion
,”
Mater. Trans.
,
45
(
2
), pp.
602
604
.
47.
Li
,
B.
, and
Zhang
,
W.
,
2018
, “
Microstructural, Surface and Electrochemical Properties of Pulse Electrodeposited Ni–W/Si3N4 Nanocomposite Coating
,”
Ceram. Int.
,
44
(
16
), pp.
19907
19918
.
48.
Mussert
,
K. M.
,
Vellinga
,
W. P.
,
Bakker
,
A.
,
Van Der Zwaag
,
S.
, 2002, “
A Nano-Indentation Study on the Mechanical Behaviour of the Matrix Material in an AA6061 - Al2O3 MMC
,”
J. Mater. Sci.
,
37
, pp.
789
794
.
49.
Maja
,
M. E.
,
Falodun
,
O. E.
,
Obadele
,
B. A.
,
Oke
,
S. R.
, and
Olubambi
,
P. A.
,
2018
, “
Nanoindentation Studies on TiN Nanoceramic Reinforced Ti–6Al–4V Matrix Composite
,”
Ceram. Int.
,
44
(
4
), pp.
4419
4425
.
You do not currently have access to this content.