Abstract

This paper investigates the ability of an aluminum-fluoropolymer energetic material to act as a multifunctional energetic structural material (MESM). The mechanical properties of the material were determined by performing quasi-static tensile testing of 3D printed dogbones. Samples were prepared with and without particle loading, as well as with different print directions, in order to gain a fundamental understanding of how these parameters affect the mechanical properties of the material. Larger truss samples were printed in order to simulate realistic structural elements. Samples were printed in different directions and burned to determine this parameter’s effect on the combustion performance of the material. The aluminum polyvinylidene fluoride mixtures considered were shown to have viable structural capabilities as well as sufficient combustion performance. The structural energetic capabilities of the formulations considered, paired with the material’s ability to be 3D printed, could enable a number of interesting applications in the aerospace and defense industry.

References

1.
Wong
,
K. V.
, and
Hernandez
,
A.
,
2012
, “
A Review of Additive Manufacturing
,”
ISRN Mech. Eng.
,
2012
, p.
208760
2.
Turner
,
B. N.
,
Strong
,
R.
, and
Gold
,
S. A.
,
2014
, “
A Review of Melt Extrusion Additive Manufacturing Processes: I. Process Design and Modeling
,”
Rapid Prototyping J.
,
20
(
3
), pp.
192
204
. 10.1108/RPJ-01-2013-0012
3.
Turner
,
B. N.
, and
Gold
,
S. A.
,
2015
, “
A Review of Melt Extrusion Additive Manufacturing Processes: II. Materials, Dimensional Accuracy, and Surface Roughness
,”
Rapid Prototyping J.
,
21
(
3
), pp.
250
261
. 10.1108/RPJ-02-2013-0017
4.
Chacon
,
J. M.
,
Caminero
,
M. A.
,
Garcia-Plaza
,
E.
, and
Nunez
,
P. J.
,
2017
, “
Additive Manufacturing of PLA Structures Using Fused Deposition Modelling: Effect of Process Parameters on Mechanical Properties and Their Optimal Selection
,”
Mater. Des.
,
124
, pp.
143
157
. 10.1016/j.matdes.2017.03.065
5.
Rodrguez
,
J. F.
,
Thomas
,
J. P.
, and
Renaud
,
J. E.
,
2003
, “
Design of Fused-Deposition ABS Components for Stiffness and Strength
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
545
551
. 10.1115/1.1582499
6.
Rodrguez
,
J. F.
,
Thomas
,
J. P.
, and
Renaud
,
J. E.
,
2001
, “
Mechanical Behavior of Acrylonitrile Butadiene Styrene (ABS) Fused Deposition Materials. Experimental Investigation
,”
Rapid Prototyping J.
,
7
(
30
), pp.
148
158
. 10.1108/13552540110395547
7.
Fleck
,
T. J.
,
Murray
,
A. K.
,
Gunduz
,
I. E.
,
Son
,
S. F.
,
Chiu
,
G. T. C.
, and
Rhoads
,
J. F.
,
2017
, “
Additive Manufacturing of Multifunctional Reactive Materials
,”
Addit. Manuf.
,
17
, pp.
176
182
. 10.1016/j.addma.2017.08.008
8.
Zaharieva
,
R.
, and
Hanagud
,
S.
,
2014
, “
Preliminary Design of Multifunctional Structural-Energetic Materials for High Density, High Strength and Release of High Enthalpic Energy
,”
Int. J. Sci. Eng. Technol.
,
3
(
9
), pp.
1189
1192
.
9.
Zhang
,
X. F.
,
Shi
,
A. S.
,
Qiao
,
L.
,
Zhang
,
J.
,
Zhang
,
Y. G.
, and
Guan
,
Z. W.
,
2013
, “
Experimental Study on Impact-Initiated Characters of Multifunctional Energetic Structural Materials
,”
J. Appl. Phys.
,
113
(
8
), p.
083508
. 10.1063/1.4793281
10.
Martin
,
M.
,
Hanagud
,
S.
, and
Thadhani
,
N. N.
,
2007
, “
Mechanical Behavior of Nickel+Aluminum Powder-Reinforced Epoxy Composite
,”
Mater. Sci. Eng. A
,
443
(
1–2
), pp.
209
218
. 10.1016/j.msea.2006.08.106
11.
Zeman
,
S.
, and
Jungov
,
Z.
,
2016
, “
Sensitivity and Performance of Energetic Materials
,”
Propellants Explos. Pyrotech.
,
41
(
3
), pp.
426
451
. 10.1002/prep.201500351
12.
Kappagantula
,
K.
,
Pantoya
,
M. L.
, and
Hunt
,
E. M.
,
2012
, “
Impact Ignition of Aluminum-Teflon Based Energetic Materials Impregnated With Nano-Structured Carbon Additives
,”
J. Appl. Phys.
,
112
(
2
), p.
024902
. 10.1063/1.4737118
13.
Hunt
,
E. M.
, and
Pantoya
,
M. L.
,
2010
, “
Impact Sensitivity of Intermetallic Nanocomposites: A Study on Compositional and Bulk Density
,”
Intermetallics
,
18
(
8
), pp.
1612
1616
. 10.1016/j.intermet.2010.04.015
14.
Valluri
,
S. K.
,
Schoenitz
,
M.
, and
Dreizin
,
E.
,
2018
, “
Fluorine-Containing Oxidizers for Metal Fuels in Energetic Formulations
,”
Def. Technol.
,
15
(
1
), pp.
1
22
. 10.1016/j.dt.2018.06.001
15.
Meeks
,
K.
,
Pantoya
,
M. L.
, and
Apblett
,
C.
,
2014
, “
Deposition and Characterization of Energetic Thin Films
,”
Combust. Flame
,
161
(
4
), pp.
1117
1124
. 10.1016/j.combustflame.2013.10.027
16.
Huang
,
C.
,
Jian
,
G.
,
DeLisio
,
J. B.
,
Wang
,
H.
, and
Zachariah
,
M. R.
,
2015
, “
Electrospray Deposition of Energetic Polymer Nanocomposites With High Mass Particle Loadings: A Prelude to 3D Printing of Rocket Motors
,”
Adv. Eng. Mater.
,
17
(
1
), pp.
95
101
. 10.1002/adem.201400151
17.
Li
,
X.
, and
Zachariah
,
M. R.
,
2016
, “
Direct-Deposition to Create High Particle Loading Propellants With Controlled Architecture: Combustion and Mechanical Properties
,”
54th AIAA Aerospace Sciences Meeting
,
San Diego, CA
,
Jan. 4–8
, p.
0688
.
18.
Ruz-Nuglo
,
F. D.
, and
Groven
,
L. J.
,
2018
, “
3D Printing and Development of Fluoropolymer Based Reactive Inks
,”
Adv. Eng. Mater.
,
20
(
2
), p.
1700390
. 10.1002/adem.201700390
19.
Mezger
,
M. J.
, and
Groven
,
L. J.
,
2017
, “Printed Energetics: The Path Toward Additive Manufacturing of Munitions,”
Energetic Materials
,
CRC Press
,
Boca Raton, FL
, pp.
115
128
.
20.
Bencomo
,
J. A.
,
Iacono
,
S. T.
, and
McCollum
,
J.
,
2018
, “
3D Printing Multifunctional Fluorinated Nanocomposites: Tuning Electroactivity, Rheology and Chemical Reactivity
,”
J. Mater. Chem. A
,
6
(
26
), pp.
12308
12315
. 10.1039/C8TA00127H
21.
ASTM Standard D638
,
2014
,
Standard Test Method for Tensile Properties of Plastics
,
ASTM International
,
West Conshohocken, PA
.
22.
ASTM Standard 7264
,
2015
,
Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials
,
ASTM International
,
West Conshohocken, PA
.
You do not currently have access to this content.