Carbon nanotubes (CNTs) are well known as perfect reinforcement for high strength and lightweight composites due to their high specific strength, thermal, electrical, and mechanical characteristics. One of the important challenges is to obtain a homogeneous dispersion of CNTs in metal matrix, so development technologies for producing metal matrix composites (MMCs) is of great interest. Melting followed by solidification, may be successfully utilized for synthesizing CNT-reinforced aluminum-based MMCs. In this study, Al/CNT composites have been produced by direct injection of CNTs in pure aluminum using high-pressure die casting (HPDC) method. The as-produced billets were subjected to cyclic extrusion (CE) to refine CNT agglomerates and to increase CNT dispersion in aluminum. Current investigation demonstrates that more than 50% efficiency of combined HPDC-CE production method has been achieved. The resulting composites demonstrated improved mechanical properties.

References

1.
Iijima
,
S.
,
Brabec
,
C.
,
Maiti
,
A.
, and
Bernholc
,
J.
,
1996
,
J. Chem. Phys.
,
104
(
5
), p.
2009
.
2.
Qianqian
,
L.
,
Viereckl
,
A.
,
Rottmair
,
C. A.
, and
Singer
,
R. F.
,
2009
, “
Improved Processing of Carbon Nanotube/Magnesium Alloy Composites
,”
Compos. Sci. Technol.
,
69
(
7–8
), pp.
1193
1199
.
3.
Kuzumaki
,
T.
,
Ujiie
,
O.
,
Ichinose
,
H.
, and
Ito
,
K.
,
2000
, “
Mechanical Characteristics and Preparation of Carbon Nanotube Fiber-Reinforced Ti Composite
,”
Adv. Eng. Mater.
,
2
(
7
), pp.
416
418
.
4.
Kuzumaki
,
T.
,
Miyazawa
,
K.
,
Ichinose
,
H.
, and
Ito
,
K.
,
1998
, “
Processing of Carbon Nanotubes Reinforced Aluminum Composite
,”
J. Mater. Res.
,
13
(
9
), pp.
2445
2449
.
5.
Shadakshari
,
R.
,
Mahesha
,
K.
, and
Niranjan
,
H. B.
,
2012
, “
Carbon Nanotube Reinforced Aluminium Matrix Composites—A Review
,”
Int. J. Innovative Res. Sci., Eng. Technol.
,
1
(
2
), pp.
206
213
.
6.
Esawi
,
A. M. K.
,
Morsi
,
K.
,
Sayed
,
A.
,
Taher
,
M.
, and
Lanka
,
S.
,
2010
, “
Effect of Carbon Nanotube (CNT) Content on the Mechanical Properties of CNT-Reinforced Aluminium Composites
,”
Compos. Sci. Technol.
,
70
(
16
), pp.
2237
2241
.
7.
Ullbrand
,
J. M.
,
Córdoba
,
J. M.
,
Tamayo-Ariztondo
,
J.
,
Elizalde
,
M. R.
,
Nygren
,
M.
,
Molina-Aldareguia
,
J. M.
, and
Odén
,
M.
,
2010
, “
Thermomechanical Properties of Copper–Carbon Nanofiber Composites Prepared by Spark Plasma Sintering and Hot Pressing
,”
Compos. Sci. Technol.
,
70
(
16
), pp.
2263
2268
.
8.
Dong
,
H.
,
Nam
,
D. H.
,
Kim
,
Y. K.
,
Cha
,
S. I.
, and
Hong
,
S. H.
,
2012
, “
Effect of CNTs on Precipitation Hardening Behavior of CNT/Al–Cu Composites
,”
Carbon
,
50
(
13
), pp.
4809
4814
.
9.
Rikhtegar
,
F.
,
Shabestari
,
S. G.
, and
Saghafian
,
H.
,
2017
, “
Microstructural Evaluation and Mechanical Properties of Al-CNT Nanocomposites Produced by Different Methods
,”
J. Alloys Compd.
,
723
, pp.
633
641
.
10.
Trinh
,
P. V.
,
Luan
,
N. V.
,
Phuong
,
D. D.
,
Minh
,
P. N.
,
Weibel
,
A.
,
Mesquich
,
D.
, and
Laurent
,
C.
,
2018
, “
Microstructure, Microhardness and Thermal Expansion of CNT/Al Composites Prepared by Flake Powder Metallurgy
,”
Compos. Part A
,
105
, pp.
126
137
.
11.
Fan
,
G.
,
Jiang
,
Y.
,
Tan
,
Z.
,
Guo
,
O.
,
Xiong
,
D.-B.
,
Su
,
Y.
,
Lin
,
R.
,
Hu
,
L.
,
Li
,
Z.
, and
Zhang
,
D.
,
2018
, “
Enhanced Interfacial Bonding and Mechanical Properties in CNT/Al Composites Fabricated by Flake Powder Metallurgy
,”
Carbon
,
130
, pp.
333
339
.
12.
Xu
,
C. L.
,
Wei
,
B. Q.
,
Ma
,
R. Z.
,
Liang
,
J.
,
Ma
,
X. K.
, and
Wu
,
D. H.
,
1999
, “
Fabrication of Aluminum–Carbon Nanotube Composites and Their Electrical Properties
,”
Carbon
,
37
(
5
), pp.
855
858
.
13.
Daoush
,
W. M.
,
Lim
,
B. K.
,
Mo
,
C. B.
,
Nam
,
D. H.
, and
Hong
,
S. H.
,
2009
, “
Electrical and Mechanical Properties of Carbon Nanotube Reinforced Copper Nanocomposites Fabricated by Electroless Deposition Process
,”
Mater. Sci. Eng. A
,
513–514
, pp.
247
253
.
14.
Feng
,
Y.
,
Yuan
,
H. L.
, and
Zhang
,
M.
,
2005
, “
Fabrication and Properties of Silver-Matrix Composites Reinforced by Carbon Nanotubes
,”
Mater. Charact.
,
55
(
3
), pp.
211
218
.
15.
Yang
,
X.
,
Zou
,
T.
,
Chunsheng Shi
,
C.
,
Liu
,
E.
,
He
,
C.
, and
Zhao
,
N.
,
2016
, “
Effect of Carbon Nanotube (CNT) Content on the Properties of In-Situ Synthesis CNT Reinforced Al Composites
,”
Mater. Sci. Eng.
,
A660
, pp.
11
18
.
16.
George
,
R.
,
Kashyap
,
K. T.
,
Rahul
,
R.
, and
Yamdagni
,
S.
,
2005
, “
Strengthen in Carbon Nanotube/Aluminium (CNT/Al) Composites
,”
Scr. Mater
,
53
(
10
), pp.
1159
1163
.
17.
Mansoor, M., and Shahid, M., 2016, “
Carbon Nanotube-Reinforced Aluminum Composite Produced by Induction Melting
,”
J. Appl. Res. Technol.
,
14
(4), pp. 215–224.
18.
Peigney
,
A.
,
Rul
,
S.
,
Lef‘evre-Schlick
,
F.
, and
Laurent
,
C.
,
2007
, “Densification During Hot-Pressing of Carbon Nanotube Metal Magnesium Aluminate Spinel Nanocomposites,”
J. Eur. Ceram. Soc.
,
27
(
5
), pp.
2183
2193
.
19.
Goh
,
C. S.
,
Wei
,
J.
,
Lee
,
L. C.
, and
Gupta
,
M.
,
2006
, “Development of Novel Carbon Nanotube Reinforced Magnesium Nanocomposites Using the Powder Metallurgy Technique,”
Nanotechnology
,
17
(
1
), pp.
7
12
.
20.
Esawi
,
A.
,
Morsi
,
K.
,
Sayed
,
A.
,
Abdel Gawad
,
A.
, and
Borah
,
P.
,
2009
, “Fabrication and Properties of Dispersed Carbon Nanotube Aluminum Composites,”
Mater. Sci. Eng. A
,
508
(
1–2
), pp.
167
173
.
21.
Carreno-Morelli
,
E.
,
Yang
,
J.
,
Couteau
,
E.
,
Hernadi
,
K.
,
Seo
,
J. W.
,
Bonjour
,
C.
, Forró, L., and Schaller, R.,
2004
, “
Carbon Nanotube / Magnesium Composites
,”
Phys. Status Solidi
,
201
(
8
), pp.
R53
R55
.
22.
Laha
,
T.
,
Kuchibhatla
,
S.
,
Seal
,
S.
,
Li
,
W.
, and
Agarwa
,
A.
,
2007
, “Interfacial Phenomena in Thermally Sprayed Multiwalled Carbon Nanotube Reinforced Aluminum Nanocomposite,”
Acta Mater.
,
55
(
3
), pp.
1059
1066
.
23.
Deng
,
C. F.
,
Wang
,
D. Z.
,
Zhang
,
X. X.
, and
Li
,
A. B.
,
2007
, “Processing and Properties of Carbon Nanotubes Reinforced Aluminum Composites,”
Mater. Sci. Eng. A
,
444
(1–2), pp.
138
145
.
24.
Bakshi
,
S. R.
,
Singh
,
V.
,
Seal
,
S.
, and
Agarwa
,
A.
, “Aluminum Composite Reinforced With Multiwalled Carbon Nanotubes From Plasma Spraying of Spray Dried Powders,”
Surf. Coat. Technol.
,
2009
,
203
(10–11), pp.
1544
1554
.
25.
Choi
,
H. J.
,
Kwon
,
G. B.
,
Lee
,
G. Y.
, and
Bae
,
D. H.
,
2008
, “Reinforcement With Carbon Nanotubes in Aluminum Matrix Composites,”
Scr. Mater.
,
59
(
3
), pp.
360
363
.
26.
P'rez-Bustamante
,
R.
,
Gomez-Esparza
,
C. D.
,
Estrada-Guel
,
I.
,
Miki-Yoshida
,
M.
,
Licea-Jim'nez
,
L.
,
P'rez-García
,
S. A.
, and Martínez-Sánchez, R.,
2009
, “Microstructural and Mechanical Characterization of Al–MWCNT Composites Produced by Mechanical Milling,”
Mater. Sci. Eng. A
,
502
(
1–2
), pp.
159
163
.
27.
Kwon
,
H.
,
Estili
,
M.
,
Takagi
,
K.
,
Miyazaki
,
T.
, and
Kawasaki
,
A.
,
2009
, “Combination of Hot Extrusion and Spark Plasma Sintering for Producing Carbon Nanotube Reinforced Aluminum Matrix Composites,”
Carbon
,
47
(
3
), pp.
570
577
.
28.
Goh
,
C. S.
,
Wei
,
J.
,
Lee
,
L. C.
, and
Gupta
,
M.
,
2006
, “Simultaneous Enhancement in Strength and Ductility by Reinforcing Magnesium With Carbon Nanotubes,”
Mater. Sci. Eng. A
,
423
(
1–2
), pp.
153
156
.
29.
Shimizu
,
Y.
,
Miki
,
S.
,
Soga
,
T.
, and
Itoh
,
I.
,
2008
, “Multi-Walled Carbon Nanotube-Reinforced Magnesium Alloy Composites,”
Scr. Mater.
,
58
(
4
), pp.
267
270
.
30.
Fleisher
,
A.
,
Katz-Demyanetz
,
A.
,
Popov
,
V.
,
Larianovsky
,
N.
,
Karni
,
N.
, and
Tal
,
Y.
,
2015
, “
Lead-Free Brass Made by Direct Injection of CNT into Shot-Sleeve of HPDC Machine
,”
Die Casting Eng.
,
9
, pp. 16–21.
You do not currently have access to this content.