One of the main challenges encountered in modeling the behavior of metal matrix composites (MMCs) during machining is the availability of a suitable constitutive equation. Currently, the Johnson–Cook (J–C) constitutive equation is being used, even though it was developed for homogeneous materials. In such a case, an equivalent set of homogeneous parameters is used, which is only suitable for a particular combination of particle size and volume fraction. The current work presents a modified form of the J–C constitutive equation that suits MMCs, and explicitly accounts for the effects of particle size and volume fraction, as controlled parameters. Also, an energy-based force model is presented, which considers particle cracking and debonding based on the principles of fracture mechanics. In order to validate the new approach, cutting forces were predicted and compared to experimental results, where a good agreement was found. In addition, the predicted forces were compared to other analytical models available in the literature.

References

1.
Lloyd
,
D. J.
,
1994
, “
Particle Reinforced Aluminium and Magnesium Matrix Composites
,”
Int. Mater. Rev.
,
39
(
1
), pp.
1
23
.
2.
Li
,
Y.
,
Ramesh
,
K. T.
, and
Chin
,
E. S. C.
,
2007
, “
Plastic Deformation and Failure in A359 Aluminium and an A359–SiCp MMC Under Quasi-Static and High-Strain-Rate Tension
,”
J. Compos. Mater.
,
41
(
1
), pp.
27
40
.
3.
Sikder
,
S.
, and
Kishawy
,
H. A.
,
2012
, “
Analytical Model for Force Prediction When Machining Metal Matrix Composite
,”
Int. J. Mech. Sci.
,
59
(
1
), pp.
95
103
.
4.
Denkena
,
B.
,
Vehmeyer
,
J.
,
Niederwestberg
,
D.
, and
Maaß
,
P.
,
2014
, “
Identification of the Specific Cutting Force for Geometrically Defined Cutting Edges and Varying Cutting Conditions
,”
Int. J. Mach. Tools Manuf.
,
82–83
, pp.
42
49
.
5.
Sonawane
,
H. A.
, and
Joshi
,
S. S.
,
2010
, “
Analytical Modelling of Chip Geometry and Cutting Forces in Helical Ball End Milling of Superalloy Inconel 718
,”
CIRP J. Manuf. Sci. Technol.
,
3
(
3
), pp.
204
217
.
6.
Tuysuz
,
O.
,
Altintas
,
Y.
, and
Feng
,
H. Y.
,
2013
, “
Prediction of Cutting Forces in Three and Five-Axis Ballend Milling With Tool Indentation Effect
,”
Int. J. Mach. Tools Manuf.
,
66
(3), pp.
66
81
.
7.
Nasr
,
M.
,
Ng
,
E. G.
, and
Elbestawi
,
M.
,
2007
, “
Modelling the Effects of Tool-Edge Radius on Residual Stresses When Orthogonal Cutting AISI-316L
,”
Int. J. Mach. Tools Manuf.
,
47
(
2
), pp.
401
411
.
8.
Nasr
,
M.
, and
Outeiro
,
J.
,
2015
, “
Sensitivity Analysis of Cryogenic Cooling on Machining of Magnesium Alloy AZ31B-O
,”
Procedia CIRP
,
31
, pp.
264
269
.
9.
Gradisek
,
J.
,
Kalveram
,
M.
, and
Weinert
,
K.
,
2004
, “
Mechanistic Identification of Specific Force Coefficients for a General End Mill
,”
Int. J. Mach. Tools Manuf.
,
44
(
4
), pp.
401
414
.
10.
Altintas
,
Y.
,
Eynian
,
M.
, and
Onozuka
,
H.
,
2008
, “
Identification of Dynamic Cutting Force Coefficients and Chatter Stability With Process Damping
,”
CIRP Ann.-Manuf. Technol.
,
57
(
1
), pp.
371
374
.
11.
Chen
,
L.
,
El-Wardany
,
T. I.
,
Nasr
,
M.
, and
Elbestawi
,
M.
,
2006
, “
Effects of Edge Preparation and Feed When Hard Turning a Hot Work Die Steel With Polycrystalline Cubic Boron Nitride Tools
,”
CIRP Ann.-Manuf. Technol.
,
55
(
1
), pp.
89
92
.
12.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Seventh International Symposium on Ballistics
,
Hague, The Netherlands
, pp.
541
547
.
13.
Tomac
,
N.
,
Tannessen
,
K.
, and
Rasch
,
F. O.
,
1992
, “
Machinability of Particulate Aluminium Matrix Composites
,”
CIRP Ann.-Manuf. Technol.
,
41
(
1
), pp.
55
58
.
14.
Songmene
,
V.
, and
Balazinski
,
M.
,
1999
, “
Machinability of Graphitic Metal Matrix Composites as a Function of Reinforcing Particles
,”
CIRP Ann.-Manuf. Technol.
,
48
(
1
), pp.
77
80
.
15.
Weinert
,
K.
,
Biermann
,
D.
, and
Bergmann
,
S.
,
2007
, “
Machining of High Strength Light Weight Alloys for Engine Applications
,”
CIRP Ann.-Manuf. Technol.
,
56
(
1
), pp.
105
108
.
16.
Kishawy
,
H. A.
,
Kannan
,
S.
, and
Balazinski
,
M.
,
2004
, “
An Energy Based Analytical Force Model for Orthogonal Cutting of Metal Matrix Composites
,”
CIRP Ann.-Manuf. Technol.
,
53
(
1
), pp.
91
94
.
17.
Pramanik
,
A.
,
Zhang
,
L. C.
, and
Arsecularatne
,
J. A.
,
2006
, “
Prediction of Cutting Forces in Machining of Metal Matrix Composites
,”
Int. J. Mach. Tools Manuf.
,
46
(
14
), pp.
1795
1803
.
18.
Kishawy
,
H. A.
,
Kannan
,
S.
, and
Balazinski
,
M.
,
2005
, “
Analytical Modelling of Tool Wear Progression During Turning Particulate Reinforced Metal Matrix Composites
,”
CIRP Ann.-Manuf. Technol.
,
54
(
1
), pp.
55
58
.
19.
Kannan
,
S.
,
Kishawy
,
H. A.
,
Deiab
, I
. M.
, and
Surappa
,
M. L.
,
2005
, “
Modelling of Tool Flank Wear Progression During Orthogonal Machining of Metal Matrix Composites
,” Trans. North Am. Manuf. Res. Inst. SME NAMRC,
33
, pp. 605–612.
20.
Bejjani
,
R.
,
2012
, “
Machinability and Modelling of Cutting Mechanism for Titanium Metal Matrix Composites
,”
Ph.D. thesis
, Universite de Montreal, Montreal, QC, Canada.
21.
Ghandehariun
,
A.
,
Kishawy
,
H.
, and
Balazinski
,
M.
,
2016
, “
On Machining Modelling of Metal Matrix Composites: A Novel Comprehensive Constitutive Equation
,”
Int. J. Mech. Sci.
,
107
(3), pp.
235
241
.
22.
Astakhov
,
V. P.
, and
Xiao
,
X.
,
2008
, “
A Methodology for Practical Cutting Force Evaluation Based on the Energy Spent in the Cutting System
,”
Mach. Sci. Technol.
,
12
(
3
), pp.
325
347
.
23.
Zhu
,
Y.
, and
Kishawy
,
H. A.
,
2005
, “
Influence of Alumina Particles on the Mechanics of Machining Metal Matrix Composites
,”
Int. J. Mach. Tools Manuf.
,
45
(4–5), pp.
389
398
.
24.
Li
,
Y.
, and
Ramesh
,
K. T.
,
1998
, “
Influence of Particle Volume Fraction, Shape, and Aspect Ratio on the Behaviour of Particle-Reinforced Metal–Matrix Composites at High Rates of Strain
,”
Acta Mater.
,
46
(
16
), pp.
5633
5646
.
25.
Chawla
,
N.
, and
Shen
,
Y. L.
,
2001
, “
Mechanical Behaviour of Particle Reinforced Metal Matrix Composites
,”
Adv. Eng. Mater.
,
3
(
6
), pp.
357
370
.
26.
Wallin
,
K.
,
Saario
,
T.
, and
Torronen
,
K.
,
1987
, “
Fracture of Brittle Particles in a Ductile Matrix
,”
Int. J. Fract.
,
32
(3), pp.
201
209
.
27.
Astakhov
,
V. P.
, and
Shvets
,
S.
,
2004
, “
The Assessment of Plastic Deformation in Metal Cutting
,”
J. Mater. Process. Technol.
,
146
(
2
), pp.
193
202
.
28.
Oxley
,
P. L. B.
,
1989
,
The Mechanics of Machining: An Analytical Approach to Assessing Machinability
,
E. Horwood
,
New York
.
29.
Tay
,
A. O.
,
Stevenson
,
M. G.
,
de Vahl Davis
,
G.
, and
Oxley
,
P. L. B.
,
1976
, “
A Numerical Method for Calculating Temperature Distributions in Machining, From Force and Shear Angle Measurements
,”
Int. J. Mach. Tool Des. Res.
,
16
(
4
), pp.
335
349
.
30.
Hauert
,
A.
,
Rossoll
,
A.
, and
Mortensen
,
A.
,
2009
, “
Particle Fracture in High-Volume-Fraction Ceramic-Reinforced Metals: Governing Parameters and Implications for Composite Failure
,”
J. Mech. Phys. Solids
,
57
(
11
), pp.
1781
1800
.
31.
Dabade
,
U. A.
,
Dapkekar
,
D.
, and
Joshi
,
S. S.
,
2009
, “
Modelling of Chip–Tool Interface Friction to Predict Cutting Forces in Machining of Al/SiCp Composites
,”
Int. J. Mach. Tools Manuf.
,
49
(
9
), pp.
690
700
.
32.
Jiang
,
J.
,
Sheng
,
F.
, and
Ren
,
F.
,
1998
, “
Modelling of Two-Body Abrasive Wear Under Multiple Contact Conditions
,”
Wear
,
217
(
1
), pp.
35
45
.
33.
Goddard
,
J.
, and
Wilman
,
H.
,
1962
, “
A Theory of Friction and Wear During the Abrasion of Metals
,”
Wear
,
5
(
2
), pp.
114
135
.
34.
Sin
,
H.
,
Saka
,
N.
, and
Suh
,
N. P.
,
1979
, “
Abrasive Wear Mechanisms and the Grit Size Effect
,”
Wear
,
55
(
1
), pp.
163
190
.
35.
Holt
,
J. M.
,
Gibson
,
C.
, and
Ho
,
C. Y.
,
1999
,
Structural Alloys Handbook
,
CINDAS/Purdue University
,
West Lafayette, IN
.
36.
Munro
,
R. G.
,
1997
, “
Evaluated Material Properties for a Sintered α-Alumina
,”
J. Am. Ceram. Soc.
,
80
(
8
), pp.
1919
1928
.
37.
Shackelford
,
J. F.
, and
Alexander
,
W.
,
2001
,
CRC Materials Science and Engineering Handbook
, 3rd ed.,
CRC Press, Boca Raton, FL
.
38.
Lesuer
,
D. R.
,
Kay
,
G. J.
, and
LeBlanc
,
M. M.
,
1999
, “
Modelling Large-Strain, High-Rate Deformation in Metals
,”
Third Biennial Tri-Laboratory Engineering Conference on Modelling and Simulation
, Pleasanton, CA.
39.
Fang
,
N.
,
2005
, “
A New Quantitative Sensitivity Analysis of the Flow Stress of 18 Engineering Materials in Machining
,”
ASME J. Eng. Mater. Technol.
,
127
(
2
), pp.
192
196
.
40.
Yadav
,
S.
,
Chichili
,
D. R.
, and
Ramesh
,
K. T.
,
1995
, “
The Mechanical Response of a 6061-T6 Al/Al2O3 Metal Matrix Composite at High Rates of Deformation
,”
Acta Mater.
,
43
(
12
), pp.
4453
4464
.
41.
Dandekar
,
C. R.
, and
Shin
,
Y. C.
,
2009
, “
Multi-Step 3-D Finite Element Modelling of Subsurface Damage in Machining Particulate Reinforced Metal Matrix Composites
,”
Composites, Part A
,
40
(
8
), pp.
1231
1239
.
You do not currently have access to this content.