In this article, the description of a novel damage-coupled constitutive formulation for the mechanical behavior of semicrystalline polyethylene is presented. The model attempts to describe the deformation and degradation processes in polyethylene considering the interplay between the amorphous and crystalline phases and following a continuum damage mechanics approach from a microstructural viewpoint. For the amorphous phase, the model is developed within a thermodynamic framework able to describe the features of the material behavior. Amorphous phase hardening is considered into the model and associated with the molecular configurations arising during the deformation process. The equation governing damage evolution is obtained by choosing a particular form based on internal energy and entropy. For the crystalline phase, the proposed model considers the deformation mechanisms by the theory of crystallographic slip and incorporates the effects of intracrystalline debonding and fragmentation. The model generated within this framework is used to simulate uniaxial tension and simple shear of high density polyethylene. The predicted stress-strain behavior and texture evolution are compared with experimental results and numerical simulations obtained from the literature. By incorporating a damage mechanics approach, the proposed model predicts the progressive loss of material stiffness attributed to the crystal fragmentation and molecular debonding of the crystal-amorphous interfaces.

1.
Budiansky
,
B.
, 1983, “
Micromechanics
,”
Comput. Struct.
0045-7949,
16
, pp.
3
12
.
2.
Krajcinovic
,
D.
, 1996,
Damage Mechanics
,
Elsevier Science
,
Amsterdam
.
3.
G’Sell
,
C.
, and
Dahoun
,
A.
, 1994, “
Evolution of Microstructure in Semi-Crystalline Polymer Under Large Plastic Deformation
,”
Mater. Sci. Eng., A
0921-5093,
175
, pp.
183
199
.
4.
Lin
,
L.
, and
Argon
,
A. S.
, 1994, “
Review: Structure and Plastic Deformation of Polyethylene
,”
J. Mater. Sci.
0022-2461,
29
, pp.
294
323
.
5.
Schrauwen
,
B. A. G.
, 2003, “
Deformation and Failure of Semicrystalline Polymer Systems: Influence of Micro and Molecular Structure
,” Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.
6.
G’Sell
,
C.
,
Hiver
,
J. M.
, and
Dahoun
,
A.
, 2002, “
Experimental Characterization of Deformation Damage in Solid Polymers Under Tension, and Its Interrelation With Necking
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
3857
3872
.
7.
Nikolov
,
S.
, and
Doghri
,
I.
, 2000, “
A Micro/Macro Constitutive Model for Small-Deformation Behavior of Polyethylene
,”
Polymer
0032-3861,
41
, pp.
1883
1891
.
8.
Nikolov
,
S.
,
Doghri
,
I.
,
Pierard
,
O.
,
Zealouk
,
L.
, and
Goldberg
,
A.
, 2002, “
Multi-Scale Constitutive Modeling of the Small Deformations of Semi-Crystalline Polymers
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
2275
2302
.
9.
Cowking
,
A.
,
Rider
,
J. G.
,
Hay
,
I. L.
, and
Keller
,
A.
, 1968, “
A Study on the Orientation Effects in Polyethylene in the Light of Crystalline Texture: Part 3
,”
J. Mater. Sci.
0022-2461,
3
, pp.
646
654
.
10.
Cowking
,
A.
, and
Rider
,
J. G.
, 1969, “
On Molecular and Textural Reorientations in Polyethylene Caused by Applied Stress
,”
J. Mater. Sci.
0022-2461,
4
, pp.
1051
1058
.
11.
Keller
,
A.
, and
Pope
,
D. P.
, 1971, “
Identification of Structural Processes in Deformation of Oriented Polyethylene
,”
J. Mater. Sci.
0022-2461,
6
, pp.
453
478
.
12.
Young
,
R. J.
,
Bowden
,
P. B.
,
Ritchie
,
J. M.
, and
Rider
,
J. G.
, 1973, “
Deformation Mechanisms in Oriented High-Density Polyethylene
,”
J. Mater. Sci.
0022-2461,
8
, pp.
23
36
.
13.
Parks
,
D. M.
, and
Ahzi
,
S.
, 1990, “
Polycrystalline Plastic Deformation and Texture Evolution for Crystals Lacking Five Independent Slip Systems
,”
J. Mater. Sci.
0022-2461,
38
, pp.
701
724
.
14.
Lee
,
B. J.
,
Parks
,
D. M.
, and
Ahzi
,
S.
, 1993, “
Micromechanical Modeling of Large Plastic Deformation and Texture Evolution in Semi-Crystalline Polymers
,”
J. Mech. Phys. Solids
0022-5096,
41
, pp.
1651
1687
.
15.
Ahzi
,
S.
,
Lee
,
B. J.
, and
Asaro
,
R. J.
, 1994, “
Plasticity and Anisotropy Evolution in Crystalline Polymers
,”
Mater. Sci. Eng., A
0921-5093,
189
, pp.
35
44
.
16.
Lee
,
B. J.
,
Ahzi
,
S.
, and
Asaro
,
R. J.
, 1995, “
On the Plasticity of Low Symmetry Crystals Lacking Five Independent Slip Systems
,”
Mech. Mater.
0167-6636,
20
, pp.
1
8
.
17.
Argon
,
A. S.
, 1997, “
Morphological Mechanism and Kinetics of Large-Strain Plastic Deformation and Evolution of Texture in Semicrystalline Polymers
,”
J. Comput.-Aided Mater. Des.
0928-1045,
4
, pp.
75
98
.
18.
Hiss
,
R.
,
Hobeika
,
S.
,
Lynn
,
C.
, and
Strobl
,
G.
, 1999, “
Network Stretching, Slip Processes, and Fragmentation of Crystallites During Uniaxial Drawing of Polyethylene and Related Copolymers: A Comparative Study
,”
Macromolecules
0024-9297,
32
, pp.
4390
4403
.
19.
Lee
,
B. J.
,
Argon
,
A. S.
,
Parks
,
D. M.
,
Ahzi
,
S.
, and
Bartczak
,
Z.
, 1993, “
Simulation of Large Strain Plastic Deformation and Texture Evolution in High Density Polyethylene
,”
Polymer
0032-3861,
34
, pp.
3555
3575
.
20.
Schoenfeld
,
S. E.
,
Ahzi
,
S.
, and
Asaro
,
R. J.
, 1995, “
Elastic-Plastic Crystal Mechanics for Low Symmetry Crystals
,”
J. Mech. Phys. Solids
0022-5096,
43
, pp.
415
446
.
21.
van Dommelen
,
J. A. W.
,
Brekelmans
,
W. A. M.
, and
Baaijens
,
F. P. T.
, 2000, “
Computational Visco-Plasticity for Kinematically Constrained Crystals
,”
Int. J. Numer. Methods Eng.
0029-5981,
48
, pp.
1311
1330
.
22.
Rabotnov
,
Y.
, 1969,
Creep Problems in Structural Members
,
North-Holland
,
Amsterdam
.
23.
Kachanov
,
L. M.
, 1986,
Introduction to Continuum Damage Mechanics
,
Martinus Nijhoff
,
Amsterdam
.
24.
Lemaitre
,
J.
, 1996,
A Course on Damage Mechanics
,
Springer-Verlag
,
Berlin
.
25.
Alvarado-Contreras
,
J.
,
Polak
,
M. A.
, and
Penlidis
,
A.
, 2007, “
Micromechanical Approach to Modeling Damage in Crystalline Polyethylene
,”
Polym. Eng. Sci.
0032-3888,
47
, pp.
410
420
.
26.
Alvarado-Contreras
,
J. A.
,
Polak
,
M. A.
, and
Penlidis
,
A.
, 2008, “
Computational Study on a Damage-Coupled Model for Crystalline Polyethylene
,”
Eng. Comput.
0177-0667,
25
, pp.
612
636
.
27.
Flory
,
P.
, 1988,
Statistical Mechanics of Chain Molecules
,
Oxford University Press
,
New York
.
28.
Arruda
,
E. M.
, and
Boyce
,
M. C.
, 1993, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
0022-5096,
41
, pp.
389
412
.
29.
Brady
,
J. M.
, and
Thomas
,
E. L.
, 1989, “
Deformation of Oriented High Density Polyethylene Shish-Kebab Films
,”
J. Mater. Sci.
0022-2461,
24
, pp.
3311
3318
.
30.
Brown
,
N.
, and
Ward
,
M.
, 1983, “
The Influence of Morphology and Molecular Weight on Ductile-Brittle Transitions in Linear Polyethylene
,”
J. Mater. Sci.
0022-2461,
18
, pp.
1405
1420
.
31.
Treloar
,
L. R.
, 1975,
The Physics of Rubber Elasticity
,
Oxford University Press
,
London
.
32.
Nicolis
,
G.
, and
Prigogine
,
I.
, 1977,
Self-Organization in Nonequilibrium Systems
,
Wiley-Interscience
,
New York
.
33.
Rosen
,
S. L.
, 1993,
Fundamental Principles of Polymeric Materials
,
Wiley
,
New York
.
34.
Lambert
,
F. L.
, 2002, “
Entropy Is Simple, Qualitatively
,”
J. Chem. Educ.
0021-9584,
79
, pp.
1241
1246
.
35.
Eyring
,
H.
, 1932, “
The Resultant Electric Moment of Complex Molecules
,”
Phys. Rev.
0031-899X,
39
, pp.
746
748
.
36.
Wang
,
M. C.
, and
Guth
,
E.
, 1952, “
Statistical Theory of Networks of Non-Gaussian Flexible Chains
,”
J. Chem. Phys.
0021-9606,
20
, pp.
1144
1157
.
37.
Treloar
,
L. R.
, 1954, “
The Photoelastic Properties of Short-Chain Molecular Networks
,”
Trans. Faraday Soc.
0014-7672,
50
, pp.
881
896
.
38.
Haward
,
R. N.
, and
Thackray
,
G.
, 1968, “
The Use of a Mathematical Model to Describe Isothermal Stress-Strain Curves in Glassy Thermoplastics
,”
Proc. R. Soc. London, Ser. A
0950-1207,
302
, pp.
453
472
.
39.
Alvarado-Contreras
,
J. A.
, 2007, “
Micromechanical Modeling of Polyethylene
,” Ph.D. thesis, University of Waterloo, Waterloo, ON, Canada.
40.
Arruda
,
E. M.
,
Boyce
,
M. C.
, and
Jayachandran
,
R.
, 1995, “
Effects of Strain Rate, Temperature and Thermomechanical Coupling on the Finite Strain Deformation of Glassy Polymers
,”
Mech. Mater.
0167-6636,
19
, pp.
193
212
.
41.
Takayanagi
,
M.
,
Nitta
,
K.
, and
Kojima
,
O.
, 2003, “
Application of Lamellar Clustering Theory to Isotactic Polypropylene and Direct Observation of Lamellar Cluster Morphology by Electron Microscopy
,”
J. Macromol. Sci., Part B
0022-2348,
42
, pp.
1049
1059
.
42.
Nitta
,
K.
, and
Takayanagi
,
M.
, 2003, “
Novel Proposal of Lamellar Clustering Process for Elucidation of Tensile Yield Behavior of Linear Polyethylenes
,”
J. Macromol. Sci., Part B
0022-2348,
42
, pp.
107
126
.
43.
Kazmierczak
,
T.
,
Galeski
,
A.
, and
Argon
,
A. S.
, 2005, “
Plastic Deformation of Polyethylene Crystals as a Function of Crystal Thickness and Compression Rate
,”
Polymer
0032-3861,
46
, pp.
8926
8936
.
44.
Argon
,
A. S.
,
Galeski
,
A.
, and
Kazmierczak
,
T.
, 2005, “
Rate Mechanisms of Plasticity in Semi-Crystalline Polyethylene
,”
Polymer
0032-3861,
46
, pp.
11798
11805
.
45.
Xuejun
,
L.
,
Mingrui
,
L.
, and
Wenbin
,
H.
, 2001, “
Finite Deformation Elasto-Plastic Theory and Consistent Algorithm
,”
Acta Mech. Solida Sinica
0894-9166,
14
, pp.
31
40
.
46.
Lemaitre
,
J.
, and
Chaboche
,
J. L.
, 1994,
Mechanics of Solid Materials
,
Cambridge University Press
,
Cambridge, UK
.
47.
Boyce
,
M. A.
, and
Arruda
,
E. M.
, 2000, “
Constitutive Models of Rubber Elasticity: A Review
,”
Rubber Chem. Technol.
0035-9475,
73
, pp.
504
523
.
48.
Fotiu
,
P.
,
Irschik
,
H.
, and
Ziegler
,
F.
, 1990, “
Dynamic Plasticity: Structural Drift and Modal Projections
,”
Proceedings of the IUTAM-Symposium
,
W.
Schiehlen
, et al.
,
Spring-Verlag
,
Berlin
, pp.
75
82
.
49.
Asaro
,
R. J.
, and
Rice
,
J. R.
, 1977, “
Strain Localization in Ductile Single Crystals
,”
J. Mech. Phys. Solids
0022-5096,
25
, pp.
309
338
.
50.
Hutchinson
,
J. W.
, 1976, “
Bounds and Self-Consistent Estimates for Creep of Polycrystalline Materials
,”
Proc. R. Soc. London, Ser. A
0950-1207,
348
, pp.
101
127
.
51.
Malvern
,
L.
, 1969,
Introduction to the Mechanics of a Continuous Medium
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
52.
Peters
,
E. A. J. F.
, 2000, “
Polymers in Flow: Modelling and Simulation
,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
53.
Simo
,
J.
, and
Hughes
,
T.
, 1998,
Computational Inelasticity
,
J. E.
Marsden
,
L.
Sirovich
, and
S.
Wiggins
, eds.,
Springer
,
New York
.
54.
Alvarado-Contreras
,
J. A.
,
Polak
,
M. A.
, and
Penlidis
,
A.
, 2008, “
Numerical Simulation of Damage at Large Deformation in Semicrystalline Polyethylene
,”
Proceedings of the International Congress on Numerical Methods in Engineering and Applied Science
,
L.
Martino
,
V.
Carrera
,
G.
Larrazabal
, and
M.
Cerrolaza
, eds., Margarita Island, Venezuela, pp.
MS55
MS60
.
55.
Steinmann
,
P.
, and
Stein
,
E.
, 1996, “
On the Numerical Treatment and Analysis of Finite Deformation Ductile Single Crystal Plasticity
,”
Comput. Method. Appl. Mech. Eng.
0045-7825,
129
, pp.
235
254
.
56.
Nikolov
,
S.
,
Lebensohn
,
R.
, and
Raabe
,
D.
, 2006, “
Self-Consistent Modeling of Large Plastic Deformation, Texture and Morphology Evolution in Semi-Crystalline Polymers
,”
J. Mech. Phys. Solids
0022-5096,
54
, pp.
1350
1375
.
57.
G’Sell
,
C.
, and
Jonas
,
J. J.
, 1981, “
Yield and Transient Effects During the Plastic Deformation of Solid Polymers
,”
J. Mater. Sci.
0022-2461,
16
, pp.
1956
1974
.
58.
Li
,
D.
,
Garmestani
,
H.
,
Kalidindi
,
S. R.
, and
Alamo
,
R.
, 2001, “
Crystallographic Texture Evolution in High-Density Polyethylene During Uniaxial Tension
,”
Polymer
0032-3861,
42
, pp.
4903
4913
.
59.
G’Sell
,
C.
,
Boni
,
S.
, and
Shrivastava
,
S.
, 1983, “
Application of the Plane Simple Shear Test for Determination of the Plastic Behavior of Solid Polymers at Large Strains
,”
J. Mater. Sci.
0022-2461,
18
, pp.
903
918
.
60.
Bartczak
,
Z.
,
Argon
,
A. S.
, and
Cohen
,
R. E.
, 1994, “
Texture Evolution in Large Strain Simple Shear Deformation of High Density Polyethylene
,”
Polymer
0032-3861,
35
, pp.
3427
3441
.
You do not currently have access to this content.