Using a three-dimensional crystal plasticity model for cyclic deformation of lath martensitic steel, a simplified scheme is adopted to simulate the effects of shot peening on inducing initial compressive residual stresses. The model is utilized to investigate the subsequent cyclic relaxation of compressive residual stresses in shot peened lath martensitic gear steel in the high cycle fatigue (HCF) regime. A strategy is identified to model both shot peening and cyclic loading processes for polycrystalline ensembles. The relaxation of residual stress field during cyclic bending is analyzed for strain ratios Rε=0 and 1 for multiple realizations of polycrystalline microstructure. Cyclic microplasticity in favorably oriented martensite grains is the primary driver for the relaxation of residual stresses in HCF. For the case of Rε=1, the cyclic plasticity occurs throughout the microstructure (macroplasticity) during the first loading cycle, resulting in substantial relaxation of compressive residual stresses at the surface and certain subsurface depths. The initial magnitude of residual stress is observed to influence the degree (percentage) of relaxation. Describing the differential intergranular yielding is necessary to capture the experimentally observed residual stress relaxation trends.

1.
Brown
,
J.
, 1996, “
Shot Peening Increases Gear Life
,”
Power Transmission Design
0032-6070,
38
(
5
), pp.
61
64
.
2.
Fuchs
,
H. O.
, 1961, “
Shot-Peening Offers New Life to Critical Metal Parts
,”
Iron Age
0021-1508,
188
(
6
), pp.
67
70
.
3.
Liu
,
L.
,
Husseini
,
N. S.
, and
Torbet
,
C. J.
, 2008, “
In Situ Imaging of High Cycle Fatigue Crack Growth in Single Crystal Nickel-Base Superalloys by Synchrotron X-Radiation
,”
ASME J. Eng. Mater. Technol.
0094-4289,
130
, p.
021008
.
4.
Jun-Sang
,
P.
,
Revesz
,
P.
,
Kazimirov
,
A.
, and
Miller
,
M. P.
, 2007, “
A Methodology for Measuring In Situ Lattice Strain of Bulk Polycrystalline Material Under Cyclic Load
,”
Rev. Sci. Instrum.
0034-6748,
78
, p.
023910
.
5.
Guagliano
,
M.
, and
Vergani
,
L.
, 2004,
An Approach for Prediction of Fatigue Strength of Shot Peened Components
,
Elsevier
,
Milan, Italy
.
6.
Sidhom
,
N.
,
Laamouri
,
A.
,
Fathallah
,
R.
,
Braham
,
C.
, and
Lieurade
,
H. P.
, 2005, “
Fatigue Strength Improvement of 5083 H11 Al-Alloy T-Welded Joints by Shot Peening: Experimental Characterization and Predictive Approach
,”
Int. J. Fatigue
0142-1123,
27
(
7
), pp.
729
745
.
7.
McClung
,
R. C.
, 2007, “
A Literature Survey on the Stability and Significance of Residual Stresses During Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
30
(
3
), pp.
173
205
.
8.
Holzapfel
,
H.
,
Schulze
,
V.
,
Voehringer
,
O.
, and
Macherauch
,
E.
, 1998, “
Residual Stress Relaxation in an AISI 4140 Steel due to Quasistatic and Cyclic Loading at Higher Temperatures
,”
Mater. Sci. Eng., A
0921-5093,
A248
(
1–2
), pp.
9
18
.
9.
Capello
,
E.
,
Davoli
,
P.
,
Filippini
,
M.
, and
Foletti
,
S.
, 2004, “
Relaxation of Residual Stresses Induced by Turning and Shot Peening on Steels
,”
J. Strain Anal. Eng. Des.
0309-3247,
39
(
3
), pp.
285
290
.
10.
Teodosio
,
J. R.
,
Cindra
,
F. M.
, and
Pedrosa
,
P. D.
, 2003,
Relaxation of Residual Stresses During Fatigue Cycles in Steels
,
Trans Tech
,
Madrid, Spain
.
11.
Zhuang
,
W. Z.
, and
Halford
,
G. R.
, 2001, “
Investigation of Residual Stress Relaxation Under Cyclic Load
,”
Int. J. Fatigue
0142-1123,
23
(
1
), pp.
31
37
.
12.
Qin
,
M.
,
Ji
,
V.
,
Ma
,
S. Y.
, and
Li
,
J. B.
, 2005,
A Study on Residual Stress Relaxation Under Quasi-Static Load
,
Trans Tech Publications
,
Xi’an, China
, pp.
430
435
.
13.
Webster
,
G. A.
, and
Ezeilo
,
A. N.
, 2001, “
Residual Stress Distributions and Their Influence on Fatigue Lifetimes
,”
Int. J. Fatigue
0142-1123,
23
(
1
), pp.
375
383
.
14.
Almer
,
J. D.
,
Cohen
,
J. B.
, and
Moran
,
B.
, 2000, “
Effects of Residual Macrostresses and Microstresses on Fatigue Crack Initiation
,”
Mater. Sci. Eng., A
0921-5093,
284
(
1–2
), pp.
268
279
.
15.
Li
,
J. K.
,
Zhang
,
R.
,
Yao
,
M.
, and
Wang
,
R.
, 1991,
Experimental Study on the Compressive Residual Stress Field Introduced by Shot-Peening
,
Elsevier
,
Barking, England
.
16.
Wang
,
S.
,
Li
,
Y.
,
Yao
,
M.
, and
Wang
,
R.
, 1998, “
Compressive Residual Stress Introduced by Shot Peening
,”
J. Mater. Process. Technol.
0924-0136,
73
(
1–3
), pp.
64
73
.
17.
Shaw
,
M. C.
, and
De Salvo
,
G.
, 1970, “
On the Plastic Flow Beneath a Blunt Axisymmetric Indentor
,”
ASME J. Eng. Ind.
0022-0817,
92
, pp.
480
494
.
18.
Meguid
,
S. A.
, and
Klair
,
M. S.
, 1985, “
Elasto-Plastic Co-Indentation Analysis of a Bounded Solid Using Finite Element Method
,”
Int. J. Mech. Sci.
0020-7403,
27
(
3
), pp.
157
168
.
19.
Khabou
,
M. T.
, and
Castex
,
L.
, 1990, “
The Effect of Material Behaviour Law on the Theoretical Shot Peening Results
,”
Eur. J. Mech. A/Solids
0997-7538,
9
(
6
), pp.
537
549
.
20.
Johnson
,
W.
, 1972,
Impact Strength of Materials
,
Edward Arnold
,
London
.
21.
Iida
,
K.
, 1986,
Dent and Affected Layer Produced by Shot Peening
,
Pergamon
,
Oxford, UK
, pp.
217
227
.
22.
Meguid
,
S. A.
,
Shagal
,
G.
, and
Stranart
,
J. C.
, 2007, “
Development and Validation of Novel FE Models for 3D Analysis of Peening of Strain-Rate Sensitive Materials
,”
ASME J. Eng. Mater. Technol.
0094-4289,
129
(
2
), pp.
271
283
.
23.
Meguid
,
S. A.
,
Shagal
,
G.
, and
Stranart
,
J. C.
, 1999, “
Finite Element Modelling of Shot-Peening Residual Stresses
,”
J. Mater. Process. Technol.
0924-0136,
92–93
, pp.
401
404
.
24.
ElTobgy
,
M. S.
,
Ng
,
E.
, and
Elbestawi
,
M. A.
, 2004, “
Three-Dimensional Elastoplastic Finite Element Model for Residual Stresses in the Shot Peening Process
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
218
(
B11
), pp.
1471
1481
.
25.
Hong
,
T.
,
Ooi
,
J. Y.
, and
Shaw
,
B. A.
, 2008, “
A Three-Dimensional Finite Element Analysis of Two/Multiple Shots Impacting on a Metallic Component
,”
Struct. Eng. Mech.
1225-4568,
29
(
6
), pp.
709
729
.
26.
Frija
,
M.
,
Hassine
,
T.
,
Fathallah
,
R.
,
Bouraoui
,
C.
,
Dogui
,
A.
, and
Laboratoire de Génie Mécanique
, 2006, “
Finite Element Modelling of Shot Peening Process: Prediction of the Compressive Residual Stresses, the Plastic Deformations and the Surface Integrity
,”
Mater. Sci. Eng., A
0921-5093,
426
(
1–2
), pp.
173
180
.
27.
Jhansale
,
H. R.
, and
Topper
,
T. H.
, 1973, “
Engineering Analysis of the Inelastic Stress Response of a Structural Metal Under Variable Cyclic Strains
,”
ASTM Spec. Tech. Publ.
0066-0558,
519
, pp.
246
270
.
28.
Iida
,
K.
,
Yamamoto
,
S.
, and
Takanashi
,
M.
, 1997, “
Residual Stress Relaxation by Reversed Loading
,”
Weld. World
0043-2288,
39
(
3
), pp.
138
144
.
29.
Smith
,
D. J.
,
Farrahi
,
G. H.
,
Zhu
,
W. X.
, and
McMahon
,
C. A.
, 2001, “
Experimental Measurement and Finite Element Simulation of the Interaction Between Residual Stresses and Mechanical Loading
,”
Int. J. Fatigue
0142-1123,
23
(
4
), pp.
293
302
.
30.
Meguid
,
S. A.
,
Shagal
,
G.
,
Stranart
,
J. C.
,
Liew
,
K. M.
, and
Ong
,
L. S.
, 2005, “
Relaxation of Peening Residual Stresses due to Cyclic Thermo-Mechanical Overload
,”
ASME J. Eng. Mater. Technol.
0094-4289,
127
(
2
), pp.
170
178
.
31.
Kuehmann
,
C. J.
, and
Olson
,
G. B.
, 1998, “
Gear Steels Designed by Computer
,”
Advanced Materials and Processes
0882-7958,
153
(
5
), pp.
40
43
.
32.
Tiemens
,
B. L.
, 2006, “
Performance Optimization and Computational Design of Ultra-High Strength Gear Steels
,” Ph.D. thesis, Department of Materials Science and Engineering, Northwestern University, Evanston, IL.
33.
Marder
,
A. R.
, and
Krauss
,
G.
, 1969, “
Formation of Low Carbon Martensite in FE-C Alloys
,”
ASM Trans. Q.
0097-3912,
62
(
4
), pp.
957
964
.
34.
Marder
,
A. R.
, and
Krauss
,
G.
, 1967, “
Morphology of Martensite in Iron-Carbon Alloys
,”
American Society of Metals–Transactions
,
60
(
4
), pp.
651
660
.
35.
Morito
,
S.
,
Saito
,
H.
,
Ogawa
,
T.
,
Furuhara
,
T.
, and
Maki
,
T.
, 2005, “
Effect of Austenite Grain Size on the Morphology and Crystallography of Lath Martensite in Low Carbon Steels
,”
ISIJ Int.
0915-1559,
45
(
1
), pp.
91
94
.
36.
Kitahara
,
H.
,
Ueji
,
R.
,
Tsuji
,
N.
, and
Minamino
,
Y.
, 2006, “
Crystallographic Features of Lath Martensite in Low-Carbon Steel
,”
Acta Mater.
1359-6454,
54
(
5
), pp.
1279
1288
.
37.
Ohmori
,
Y.
, and
Sugisawa
,
S.
, 1973, “
Carbide Precipitation in Tempered Martensite
,”
Sumitomo Search
0585-9131,
9
, pp.
31
45
.
38.
Schastlivtsev
,
V. M.
,
Rodionov
,
D. P.
,
Khlebnikova
,
Y. V.
, and
Yakovleva
,
I. L.
, 1999, “
Peculiarity of Structure and Crystallography of Plastic Deformation of Lath Martensite in Structural Steels
,”
Mater. Sci. Eng., A
0921-5093,
A273–275
, pp.
437
442
.
39.
McGinty
,
R.
, 2001, “
Multiscale Representation of Polycrystalline Inelasticity
,” Ph.D. thesis, Georgia Institute of Technology.
40.
McGinty
,
R. D.
, and
McDowell
,
D. L.
, 1999, “
Multiscale Polycrystal Plasticity
,”
ASME J. Eng. Mater. Technol.
0094-4289,
121
(
2
), pp.
203
209
.
41.
Cuitino
,
A. M.
, and
Ortiz
,
M.
, 1993, “
Computational Modelling of Single Crystals
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
1
(
3
), pp.
225
263
.
42.
Asaro
,
R. J.
, 1983, “
Micromechanics of Crystals and Polycrystals
,”
Adv. Appl. Mech.
0065-2156,
23
, pp.
1
115
.
43.
Horstemeyer
,
M. F.
,
McDowell
,
D. L.
, and
McGinty
,
R. D.
, 1999, “
Design of Experiments for Constitutive Model Selection: Application to Polycrystal Elastoviscoplasticity
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
7
(
2
), pp.
253
273
.
44.
Bennett
,
V. P.
, and
McDowell
,
D. L.
, 2003, “
Polycrystal Orientation Distribution Effects on Microslip in High Cycle Fatigue
,”
Int. J. Fatigue
0142-1123,
25
(
1
), pp.
27
39
.
45.
Xie
,
C. L.
,
Ghosh
,
S.
, and
Groeber
,
M.
, 2004, “
Modeling Cyclic Deformation of HSLA Steels Using Crystal Plasticity
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
(
4
), pp.
339
352
.
46.
Kobayashi
,
M.
,
Matsui
,
T.
, and
Murakami
,
Y.
, 1998, “
Mechanism of Creation of Compressive Residual Stress by Shot Peening
,”
Int. J. Fatigue
0142-1123,
20
(
5
), pp.
351
357
.
47.
Zhang
,
J.
,
Prasannavenkatesan
,
R.
,
Shenoy
,
M. M.
, and
McDowell
,
D. L.
, 2009, “
Modeling Fatigue Crack Nucleation at Primary Inclusions in Carburized and Shot-Peened Martensitic Steel
,”
Eng. Fract. Mech.
0013-7944,
76
(
3
), pp.
315
334
.
48.
Prasannavenkatesan
,
R.
,
Zhang
,
J.
,
McDowell
,
D. L.
,
Olson
,
G. B.
, and
Jou
,
H. -J.
, 2009, “
3D Modeling of Subsurface Fatigue Crack Nucleation Potency of Primary Inclusions in Heat Treated and Shot Peened Martensitic Gear Steels
,”
Int. J. Fatigue
0142-1123,
31
(
7
), pp.
1176
1189
.
49.
HKS Inc.
, 2005, ABAQUS, Version 6.5-4, Providence, RI.
50.
Kim
,
S. A.
, and
Johnson
,
W. L.
, 2007, “
Elastic Constants and Internal Friction of Martensitic Steel, Ferritic-Pearlitic Steel, and α-Iron
,”
Mater. Sci. Eng., A
0921-5093,
452–453
, pp.
633
639
.
51.
Morito
,
S.
,
Yoshida
,
H.
,
Maki
,
T.
, and
Huang
,
X.
, 2006, “
Effect of Block Size on the Strength of Lath Martensite in Low Carbon Steels
,”
Mater. Sci. Eng., A
0921-5093,
438–440
, pp.
237
240
.
52.
Qian
,
Y.
,
Almer
,
J.
,
Lienert
,
U.
,
Tiemens
,
B. L.
, and
Olson
,
G. B.
, 2006, “
Nondestructive Residual Stress Distribution Measurements in Nanostructured Ultrhigh-Strength Gear Steels
,”
Fifth International Conference on Synchrotron Radiation in Materials Science
, Chicago, IL.
53.
McDowell
,
D. L.
, 2007, “
Simulation-Based Strategies for Microstructure-Sensitive Fatigue Modeling
,”
Mater. Sci. Eng., A
0921-5093,
468–470
, pp.
4
14
.
54.
McDowell
,
D. L.
, 2008, “
Viscoplasticity of Heterogeneous Metallic Materials
,”
Mater. Sci. Eng., R.
,
62
(
3
), pp.
67
123
.
55.
Lankford
,
J.
, 1977, “
Initiation and Early Growth of Fatigue Cracks in High Strength Steel
,”
Eng. Fract. Mech.
0013-7944,
9
(
3
), pp.
617
24
.
56.
Shenoy
,
M.
,
Zhang
,
J.
, and
McDowell
,
D. L.
, 2007, “
Estimating Fatigue Sensitivity to Polycrystalline Ni-Base Superalloy Microstructures Using a Computational Approach
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
30
(
10
), pp.
889
904
.
57.
Kumar
,
R. S.
,
Wang
,
A. J.
, and
McDowell
,
D. L.
, 2006, “
Effects of Microstructure Variability on Intrinsic Fatigue Resistance of Nickel-Base Superalloys—A Computational Micromechanics Approach
,”
Int. J. Fract.
0376-9429,
137
(
1–4
), pp.
173
210
.
58.
McDowell
,
D. L.
, and
Dunne
,
F. P. E.
, “
Microstructure-Sensitive Computational Modeling of Fatigue Crack Formation
,”
Int. J. Fatigue
0142-1123, in press.
59.
Gall
,
K.
,
Horstemeyer
,
M. F.
,
Degner
,
B. W.
,
McDowell
,
D. L.
, and
Fan
,
J.
, 2001, “
On the Driving Force for Fatigue Crack Formation From Inclusion and Voids in a Cast A356 Aluminum Alloy
,”
Int. J. Fract.
0376-9429,
108
(
3
), pp.
207
233
.
60.
Prasannavenkatesan
,
R.
,
McDowell
,
D. L.
,
Olson
G. B.
, and
Jou
,
H. -J.
, 2009, “
Modeling Effects of Compliant Coatings on HCF Resistance of Primary Inclusions in High Strength Steels
,”
ASME J. Eng. Mater. Technol.
0094-4289,
131
(
1
), p.
011012
.
61.
Shiozawa
,
K.
, and
Lu
,
L.
, 2002, “
Very High-Cycle Fatigue Behaviour of Shot-Peened High-Carbon-Chromium Bearing Steel
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
25
(
8–9
), pp.
813
22
.
You do not currently have access to this content.