Shot peening is a commonly used surface treatment process that imparts compressive residual stresses into the surface of metal components. Compressive residual stresses retard initiation and growth of fatigue cracks. During the component loading history, the shot-peened residual stresses may change due to thermal exposure, creep, and cyclic loading. This paper describes a methodical approach for characterizing and modeling residual stress relaxation under elevated temperature loading, near and above the monotonic yield strength of nickel-base superalloy IN100. The model incorporates the dominant creep deformation mechanism, coupling between the creep and plasticity models, and effects of prior plastic strain. The initial room temperature residual stress and plastic strain profiles provide the initial conditions for relaxation predictions using the coupled creep-plasticity model. Model predictions correlate well with experimental results on shot-peened dogbone specimens subject to single cycle and creep loading conditions at elevated temperature. The predictions accurately capture both the shape and magnitude of the retained residual stress profile.

1.
Happ
,
M. B.
,
Mourer
,
D. P.
, and
Schmidt
,
R. L.
, 1987, “
Residual Stress Analysis and LCF Test Results for Peened Bolt Hole and Dovetail Configurations
,”
Proceedings of the ASM’s Conference on Residual Stress—In Design, Process and Materials Selection
,
W. B.
Young
, ed., Cincinnati, OH, Apr., pp.
127
136
.
2.
Vukelich
,
S.
,
Berkley
,
S.
,
Russ
,
S.
, and
Bradley
,
E. F.
, 2002, “
Residual Stress Measurement and Its Application to Achieve Predicted Full Life Potential of Low Cycle Fatigue (LCF) Engine Disks
,”
The Ninth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, Feb.
3.
Prevéy
,
P.
,
Hornbach
,
D.
, and
Mason
,
P.
, 1998, “
Thermal Residual Stress Relaxation and Distortion in Surface Enhanced Gas Turbine Engine Components
,”
Proceedings of the 17th Heat Treating Society Conference and Exposition and the First International Induction Heat Treating Symposium
,
D.
Milam
,
D.
Poteet
,
G.
Pfaffmann
,
W.
Albert
,
A.
Muhlbauer
, and
V.
Rudnev
,
ASM
Materials Park, OH
, pp.
3
12
.
4.
Prevéy
,
P.
, 2000, “
The Effect of Cold Work on the Thermal Stability of Residual Compression in Surface Enhanced IN718
,”
Proceedings of the 20th ASM Materials Solution Conference and Exposition
, St. Louis, MO, Oct. 10–12.
5.
Gabb
,
T. P.
,
Telesman
,
J.
,
Kantos
,
P. T.
,
Bonacuse
,
P. J.
,
Barrie
,
R. L.
, and
Hornbach
,
D. J.
, 2004, “
Stress Relaxation in Powder Metallurgy Superalloy Disks
,
TMS Lett.
1550-2570,
1
(
5
), pp.
115
116
.
6.
Ruschau
,
J.
,
John
,
R.
,
Thompson
,
S.
, and
Nicholas
,
T.
, 1999, “
Fatigue Crack Growth Rate Characteristics of Laser Shock Peened Ti-6Al-4V
,”
ASME J. Eng. Mater. Technol.
0094-4289,
121
(
3
), pp.
321
329
.
7.
Diesner
,
R. W.
, 1971, “
The Effect of Elevated Temperature Exposure on Residual Stresses
,” SAE Technical Paper No. 710285.
8.
Hoffman
,
J.
,
Scholtes
,
B.
,
Vöhringer
,
O.
, and
Macherauch
,
E.
, 1987, “
Thermal Relaxation of Shot Peened Residual Stresses in the Differently Heat Treated Plain Carbon Steel Ck 45
,”
Proceedings of the Third International Conference on Shot Peening
,
H.
Wohlfahrt
,
R.
Kopp
, and
O.
Vöhringer
, Garmisch-Partenkirchen (FRG), pp.
239
247
.
9.
Childs
,
W. H.
, 1988, “
The Effect of Elevated Temperature on Shot Peened 403 Stainless Steel
,”
Analytical and Experimental Methods for Residual Stress Effects in Fatigue
,
R. L.
Champoux
,
J. H.
Underwood
, and
J. A.
Kapp
, eds.,
American Society for Testing and Materials
,
Philadelphia, PA
, ASTM STP No. 1004, pp.
21
24
.
10.
Lu
,
J.
,
Flavenot
,
J. F.
, and
Turbat
,
A.
, 1988, “
Prediction of Residual Stress Relaxation During Fatigue
,”
Mechanical Relaxation of Residual Stresses
,
L.
Mordfin
, ed.,
American Society for Testing and Materials
,
Philadelphia, PA
, ASTM STP No. 993, pp.
75
90
.
11.
Landgraf
,
R. W.
, and
Chernenkoff
,
R. A.
, 1988, “
Residual Stress Effects on Fatigue of Surface Processed Steels
,”
Analytical and Experimental Methods for Residual Stress Effects in Fatigue
,
R. L.
Champoux
,
J. H.
Underwood
, and
J. A.
Kapp
, eds.,
American Society for Testing and Materials
,
Philadelphia, PA
, ASTM STP No. 1004, pp.
1
12
.
12.
Cao
,
W.
,
Khadhraoui
,
M.
,
Brenier
,
B.
,
Guédou
,
J. Y.
, and
Castex
,
L.
, 1994, “
Thermomechanical Relaxation of Residual Stress in Shot Peened Nickel Base Superalloy
,”
Mater. Sci. Technol.
0267-0836,
10
, pp.
947
954
.
13.
Holzapfel
,
H.
,
Schulze
,
V.
,
Vöhringer
,
O.
, and
Macherauch
,
E.
, 1998, “
Residual Stress Relaxation in an AISI 4140 Steel Due to Quasistatic and Cyclic Loading at Higher Temperatures
,”
Mater. Sci. Eng., A
0921-5093,
248
, pp.
9
18
.
14.
Chaboche
,
J. L.
, and
Jung
,
O.
, 1997, “
Application of a Kinematic Hardening Viscoplasticity Model With Thresholds to the Residual Stress Relaxation
,”
Int. J. Plast.
0749-6419,
13
(
10
), pp.
785
807
.
15.
Smith
,
D. J.
,
Farrahi
,
G. H.
,
Zhu
,
W. X.
, and
McMahon
,
C. A.
, 2001, “
Experimental Measurement and Finite Element Simulation of the Interaction Between Residual Stresses and Mechanical Loading
,”
Int. J. Fatigue
0142-1123,
23
, pp.
293
302
.
16.
Buchanan
,
D. J.
,
John
,
R.
, and
Ashbaugh
,
N. E.
, 2006, “
Thermal Residual Stress Relaxation in Powder Metal IN100 Superalloy
,”
J. ASTM Int.
1546-962X,
3
(
5
), p.
JAI12552
.
17.
Schoeck
,
G.
, 1961, “
Theories of Creep
,”
Mechanical Behavior of Materials at Elevated Temperatures
,
J. E.
Dorn
, ed.,
McGraw-Hill
,
New York
, pp.
79
107
.
18.
Ashby
,
M. F.
, 1972, “
A First Report on Deformation-Mechanism Maps
,”
Acta Metall.
0001-6160,
20
(
7
), pp.
887
897
.
19.
Nowick
,
A. S.
, and
Machlin
,
E. S.
, 1946, “
Quantitative Treatment of the Creep of Metals by Dislocation and Rate Process Theories
,” National Advisory Committee for Aeronautics (NACA), Technical Note No. 1039.
20.
Weertman
,
J.
, 1955, “
Theory of Steady-State Creep Based on Dislocation Climb
,”
J. Appl. Phys.
0021-8979,
26
(
10
), pp.
1213
1217
.
21.
Evans
,
R. W.
, and
Wilshire
,
B.
, 1985,
Creep of Metals and Alloys
,
The Institute of Metals
,
London
.
22.
Kachanov
,
L. M.
, 1958, “
Time of the Rupture Process Under Creep Conditions
,”
Izv. Akad. Nauk. SSR, Otd Tekh
,
8
, pp.
26
31
.
23.
Rabotnov
,
Y. N.
, 1969,
Creep Problems in Structural Members
,
North-Holland
,
Amsterdam
.
24.
Chaboche
,
J. L.
, 1988, “
Continuum Damage Mechanics: Part I—General Concepts
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
59
64
.
25.
Chaboche
,
J. L.
, 1988, “
Continuum Damage Mechanics: Part II—Damage Growth, Crack Initiation, and Crack Growth
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
65
72
.
26.
Sanders
,
D. R.
, 1986, “
A Comparison of Several Creep Constitutive Theories for the Prediction of Elastic-Plastic-Creep Response and Their Application to Finite Element Analysis
,” Ph.D. thesis, Texas A&M University, College Station, TX.
27.
McLean
,
M.
, and
Dyson
,
B. F.
, 2000, “
Modeling the Effects of Damage and Microstructural Evolution on the Creep Behavior of Engineering Alloys
,”
ASME J. Eng. Mater. Technol.
0094-4289,
122
(
3
), pp.
273
278
.
28.
Bodner
,
S. R.
, and
Partom
,
Y.
, 1975, “
Constitutive Equations for Elastic-Viscoplastic Strain-Hardening Materials
,”
ASME J. Appl. Mech.
0021-8936,
42
, pp.
385
389
.
29.
Walker
,
K.
, 1981, “
Research and Development Program for Nonlinear Structural Modeling With Advanced Time-Temperature Dependent Constitutive Relationships
,”
NASA
Contractor Report No. NASA-CR-165533.
30.
Ramaswamy
,
V. G.
, 1986, “
A Constitutive Model for the Inelastic Multiaxial Cyclic Response of a Nickel Base Superalloy René 80
,”
NASA
Contractor Report No. 3998.
31.
Robinson
,
D. N.
, 1978, “
A Unified Creep-Plasticity Model for Structural Metals at High Temperature
,” ORNL TM-5969.
32.
Miller
,
A. K.
, 1976, “
An Inelastic Constitutive Model for Monotonic, Cyclic, Creep Deformation: Part I—Equations Development and Analytical Procedures; Part II—Applications to Type 304 Stainless Steel
,”
ASME J. Eng. Mater. Technol.
0094-4289,
96
, pp.
97
113
.
33.
Parker
,
J. D.
, and
Wilshire
,
B.
, 1980, “
The Effects of Prestrain on the Creep and Fracture Behavior of Polycrystalline Copper
,”
Mater. Sci. Eng.
0025-5416,
43
, pp.
271
280
.
34.
Davies
,
P. W.
,
Finniear
,
T. C.
, and
Wilshire
,
B.
, 1963, “
The Effect of Compressive Prestrain on the Creep and Fracture Properties of Pure Nickel at 500°C
,”
J. Inst. Met.
0020-2975,
91
, pp.
289
292
.
35.
Burt
,
H.
,
Elliott
,
I. C.
, and
Wilshire
,
B.
, 1981, “
Effects of Room-Temperature Prestrain on Creep-Fracture Behavior of Nimonic 105
,”
Met. Sci.
0306-3453,
15
, pp.
421
424
.
36.
Larson
,
F. R.
, and
Miller
,
J.
, 1952, “
A Time-Temperature Relationship for Rupture and Creep Stresses
,”
Trans. ASME
0097-6822,
74
, pp.
765
771
.
37.
Avrami
,
M. J.
, 1939, “
Kinetics of Phase Change. I General Theory
,”
J. Chem. Phys.
0021-9606,
7
, pp.
1103
1112
.
38.
John
,
R.
,
Larsen
,
J. M.
,
Buchanan
,
D. J.
, and
Ashbaugh
,
N. E.
, 2002, “
Incorporating Residual Stresses in Life Prediction of Turbine Engine Components
,”
Fatigue
,
2/5
, pp.
1063
1070
. 0021-9606
39.
Li
,
K.
,
Ashbaugh
,
N. E.
, and
Rosenberger
,
A. H.
, 2004, “
Crystallographic Initiation of Nickel-Base Superalloy IN100 at RT and 538°C Under Low Cycle Fatigue Conditions
,”
Superalloys 2004
,
K. A.
Green
,
T. M.
Pollock
,
H.
Harada
,
T. E.
Howson
,
R. C.
Reed
,
J. J.
Schirra
, and
S.
Walston
, eds.,
TMS
, pp.
251
258
.
40.
Hartman
,
G. A.
,
Ashbaugh
,
N. E.
, and
Buchanan
,
D. J.
, 1994, “
A Sampling of Mechanical Test Automation Methodologies Used in a Basic Research Laboratory
,”
Automation in Fatigue and Fracture: Testing and Analysis
,
C.
Amzallag
, ed.,
American Society for Testing and Materials
,
Philadelphia, PA
, ASTM STP No. 1231, pp.
36
50
.
41.
Dodds
,
R. H.
, 1987, “
Numerical Techniques for Plasticity Computations in Finite Element Analysis
,”
Comput. Struct.
0045-7949,
26
(
5
), pp.
767
779
.
42.
Armstrong
,
P. J.
, and
Frederick
,
C. O.
, 1966, “
A Mathematical Representation of the Multiaxial Baushhinger Effect
,” CEGB Report No. RD/B/N731.
43.
Johnson
,
A. E.
, 1949, “
The Creep of a Normally Isotropic Aluminum Alloy Under Combined Stress Systems at Elevated Temperature
,”
Metallurgia
,
40
, pp.
125
139
.
44.
Kennedy
,
C. R.
,
Harms
,
W. O.
, and
Douglas
,
D. A.
, 1959, “
Multiaxial Creep Studies on Inconel at 1500°F
,”
ASME J. Basic Eng.
0021-9223,
81
, pp.
599
609
.
45.
Braisted
,
W. R.
, and
Brockman
,
R. A.
, 1999, “
Laser Shock Peening Analytical Development
,” UDRI Technical Report No. UDRI-TR-99-047.
46.
Ellyin
,
F.
, and
Xia
,
Z.
, 1991, “
A Rate-Dependent Inelastic Constitutive Model—Part I: Elastic-Plastic Flow
,”
ASME J. Eng. Mater. Technol.
0094-4289,
113
(
3
), pp.
314
323
.
47.
Xia
,
Z.
, and
Ellyin
,
F.
, 1991, “
A Rate-Dependent Inelastic Constitutive Model—Part II: Creep Deformation Including Prior Plastic Strain Effects
,”
ASME J. Eng. Mater. Technol.
0094-4289,
113
(
3
), pp.
324
328
.
48.
Kirk
,
D.
, 1987, “
Effects of Plastic Straining on Residual Stresses Induced by Shot-Peening
,”
Proceedings of the Third International Conference on Shot Peening
,
H.
Wohlfahrt
,
R.
Kopp
, and
O.
Vöhringer
, eds., Garmisch-Partenkirchen (FRG), pp.
213
220
.
You do not currently have access to this content.