An advanced numerical methodology to simulate virtually any sheet or bulk metal forming including various kinds of initial and induced anisotropies fully coupled to the isotropic ductile damage is presented. First, the fully coupled anisotropic constitutive equations in the framework of continuum damage mechanics under large plastic deformation are presented. Special care is paid to the strong coupling between the main mechanical fields such as elastoplasticity, mixed nonlinear isotropic and kinematic hardenings, ductile isotropic damage, and contact with friction in the framework of nonassociative and non-normal formulation. The associated numerical aspects concerning both the local integration of the coupled constitutive equations as well as the (global) equilibrium integration schemes are presented. The local integration is outlined, thanks to the Newton iterative scheme applied to a reduced system of ordinary differential equations. For the global resolution of the equilibrium problem, the classical dynamic explicit (DE) scheme with an adaptive time step control is used. This fully coupled procedure is implemented into the general purpose finite element code for metal forming simulation, namely, ABAQUS/EXPLICIT. This gives a powerful numerical tool for virtual optimization of metal forming processes before their physical realization. This optimization with respect to the ductile damage occurrence can be made either to avoid the damage occurrence to have a nondamaged part as in forging, stamping, deep drawing, etc., or to favor the damage initiation and growth for some metal cutting processes as in blanking, guillotining, or machining by chip formation. Two 3D examples concerning the sheet metal forming are given in order to show the capability of the proposed methodology to predict the damage initiation and growth during metal forming processes.

1.
Saanouni
,
K.
, and
Chaboche
,
J. L.
, 2003, “
Computational Damage Mechanics: Application to Metal Forming
,” in
Comprehencive Structural Integrity
,
I.
Milne
,
R. O.
Ritchie
, and
B.
Karihaloo
, eds.,
Elsevier
,
Oxford
.
2.
Cherouat
,
A.
, and
Saanouni
,
K.
, 2003, “
Numerical Simulation of Sheet Metal Blanking Process Using a Coupled Finite Elastoplastic Damage Modelling
,”
Int. J. Form. Processes
1292-7775,
6
(
1
) pp.
7
32
.
3.
Abdali
,
A. K.
,
Denkrid
,
K.
, and
Bussy
,
P.
, 1995, “
Numerical Simulation of Sheet Cutting
,”
Numiform’95
,
X. L.
Shen
and
P.
Dawson
, eds.,
MAB
, pp.
807
813
.
4.
Homsi
,
M.
,
Morançay
,
L.
, and
Roelandt
,
J. M.
, 1996, “
Remeshing Processes Applied to the Simulation of Metal Cutting
,”
Revue Européenne des Eléments Finis
,
5
, pp.
297
321
.
5.
Brokken
,
D.
,
Brekemans
,
W.
, and
Baaijens
,
F.
, 1998, “
Numerical Modelling of the Metal Blanking Process
,”
J. Mater. Process. Technol.
0924-0136,
83
, pp.
192
199
.
6.
Hambli
,
R.
, 2001, “
Finite Element Model Fracture Prediction During Sheet-Metal Blanking Processes
,”
Eng. Fract. Mech.
0013-7944,
68
, pp.
365
378
.
7.
Cordebois
,
J. P.
, 1983, “
Critères d’instabilité plastique et endommagement ductile en grandes déformations
,” Thèse d’Etat, Université Paris VI.
8.
Gelin
,
J. C.
,
Oudin
,
J.
, and
Ravalard
,
Y.
, 1985, “
An Imposed Finite Element Method for the Analysis of Damage and Ductile Fracture in Cold Metal Forming Processes
,”
CIRP Ann.
0007-8506,
34
(
1
), pp.
209
213
.
9.
Hartley
,
P.
,
Clift
,
S. E.
,
Salimi
,
J.
,
Sturgess
,
C. E. N.
, and
Pillinger
,
I.
, 1989, “
The Prediction of Ductile Fracture Initiation in Metalforming Using a Finite Element Method and Various Fracture Criteria
,”
Res. Mech.
0143-0084,
28
, pp.
269
293
.
10.
Liu
,
T. S.
, and
Chung
,
N. L.
, 1990, “
Extrusion Analysis and Workability Prediction Using Finite Element Method
,”
Comput. Struct.
0045-7949,
36
, pp.
369
377
.
11.
Zhu
,
Y. Y.
, and
Cescotto
,
S.
, 1991, “
The Finite Element Prediction of Ductile Fracture Initiation in Dynamic Metalforming Processes
,”
J. Phys. III
1155-4320,
1
, pp.
751
757
.
12.
Clift
,
S. E.
, 1992, “
Fracture in Forming Processes
,” in
Numerical Modeling of Material Deformation Processes
,
P.
Hartley
, ed.,
Springer
,
Berlin
, pp.
406
418
.
13.
Cordebois
,
J. P.
, and
Ladevèze
,
P.
, 1985, “
Necking Criterion Applied in Sheet Metal Forming
,” in
Plastic Behavior of Anisotropic Solids
,
J. P.
Boehler
, ed.,
CNRS
Paris
.
14.
Aravas
,
N.
, 1986, “
The Analysis of Void Growth That Leads to Central Burst During Extrusion
,”
J. Mech. Phys. Solids
0022-5096,
34
, pp.
55
79
.
15.
Onate
,
E.
, and
Kleiber
,
M.
, 1988, “
Plastic and Viscoplastic Flow of Void Containing Metal: Applications to Axisymmetric Sheet Forming Problem
,”
Int. J. Numer. Methods Eng.
0029-5981,
25
, pp.
237
251
.
16.
Gelin
,
J. C.
, 1990, “
Finite Element Analysis of Ductile Fracture and Defects Formations in Cold and Hot Forging
,”
CIRP Ann.
0007-8506,
39
, pp.
215
218
.
17.
Bontcheva
,
N.
, and
Iankov
,
R.
, 1991, “
Numerical Investigation of the Damage Process in Metal Forming
,”
Eng. Fract. Mech.
0013-7944,
40
, pp.
387
393
.
18.
Brunet
,
M.
,
Sabourin
,
F.
, and
Mguil-Touchal
,
S.
, 1996, “
The Prediction of Necking and Failure in 3D Sheet Forming Analysis Using Damage Variable
,”
J. Phys. III
1155-4320,
6
, pp.
473
482
.
19.
Picart
,
P.
,
Ghouati
,
O.
, and
Gelin
,
J. C.
, 1998, “
Optimization of Metal Forming Process Parameters With Damage Minimization
,”
J. Mater. Process. Technol.
0924-0136,
80–81
, pp.
597
601
.
20.
Lee
,
H.
,
Peng
,
K. E.
, and
Wang
,
J.
, 1985, “
An Anisotropic Damage Criterion for Deformation Instability and Its Application to Forming Limit Analysis of Metal Plates
,”
Eng. Fract. Mech.
0013-7944,
21
(
5
), pp.
1031
1054
.
21.
Mathur
,
K.
, and
Dawson
,
P.
, 1987, “
Damage Evolution Modeling in Bulk Forming Processes
,” in
Computational Methods for Predicting Material Processing Defects
,
Elsevier
,
Predeleanu
.
22.
Zhu
,
Y. Y.
,
Cescotto
,
S.
, and
Habraken
,
A. M.
, 1992, “
A Fully Coupled Elastoplastic Damage Modeling and Fracture Criteria in Metal Forming Processes
,”
J. Mater. Process. Technol.
0924-0136,
32
, pp.
197
204
.
23.
Zhu
,
Y. Y.
, and
Cescotto
,
S.
, 1995, “
A Fully Coupled Elasto-Visco-Plastic Damage Theory for Anisotropic Materials
,”
Int. J. Solids Struct.
0020-7683,
32
(
11
), pp.
1607
1641
.
24.
Saanouni
,
K.
, and
Hammi
,
Y.
, 2000, “
Numerical Simulation of Damage in Metal Forming Processes
,” in
Continuous Damage and Fracture
,
A.
Benallal
, ed.,
Elsevier
,
New York
, pp.
353
363
.
25.
Saanouni
,
K.
,
Nesnas
,
K.
, and
Hammi
,
Y.
, 2000, “
Damage Modelling in Metal Forming Processes
,”
Int. J. Damage Mech.
1056-7895,
9
, pp.
196
240
.
26.
Saanouni
,
K.
,
Cherouat
,
A.
, and
Hammi
,
Y.
, 2001, “
Numerical Aspects of Finite Elastoplasticity With Isotropic Ductile Damage for Metal Forming
,”
Revue Européenne des Eléments Finis
,
10
(
2-3-4
), pp.
327
351
.
27.
Borouchaki
,
H.
,
Cherouat
,
A.
,
Saanouni
,
K.
, and
Laug
,
P.
, 2002, “
Remaillage en grandes déformations. Application à la mise en forme de structures 2D
,”
Revue Européenne des Eléments Finis
,
11
(
1
), pp.
57
79
.
28.
Mariage
,
J.-F.
,
Saanouni
,
K.
,
Lestriez
,
P.
, and
Cherouat
,
A.
, 2002, “
Numerical Simulation of Ductile Damage in Metal Forming Processes: A Simple Predictive Model. Part I. Theoretical and Numerical Aspects
,”
Int. J. Form. Processes
1292-7775,
5
(
2-3-4
) pp.
363
376
.
29.
Mariage
,
J.-F.
,
Saanouni
,
K.
,
Lestriez
,
P.
, and
Cherouat
,
A.
, 2002, “
Numerical Simulation of Ductile Damage in Metal Forming Processes: A Simple Predictive Model. Part II: Some Applications
,”
Int. J. Form. Processes
1292-7775,
5
(
2-3-4
) pp.
377
390
.
30.
Mariage
,
J.-F.
,
Saanouni
,
K.
, and
Lestriez
,
P.
, 2002, “
Numerical Simulation of Extrusion With Central Bursting Prediction by Continuum Damage Mechanics
,”
Proceedings of the Fifth international ESAFORM Conference on Material Forming
,
Krakow
, pp.
475
478
.
31.
Mariage
,
J.-F.
, 2003, “
Simulation numérique de l’endom-magement ductile en formage de pièces massives
,” Ph.D. thesis, University of Technology of Troyes.
32.
Cherouat
,
A.
,
Saanouni
,
K.
, and
Hammi
,
Y.
, 2002, “
Numerical Improvement of Thin Tubes Hydroforming With Respect to Ductile Damage
,”
Int. J. Mech. Sci.
0020-7403,
44
, pp.
2427
2446
.
33.
Badreddine
,
H.
,
Saanouni
,
K.
,
Dogui
,
A.
, and
Gahbich
,
M. A.
, 2006, “
Elastoplasticité anisotrope non normale en grandes déformations avec endommagement. Application à la mise en forme de tôles minces
,”
Revue Européenne de Mécanique Numérique
,
16
(
6
), pp.
913
940
.
34.
Badreddine
,
H.
, 2006, “
Elastoplasticité anisotrope endommageable en grandes déformations: Aspects théoriques, numériques et application
,” Ph.D. thesis, UTT.
35.
Badreddine
,
H.
,
Saanouni
,
K.
, and
Dogui
,
A.
, “
On Finite Plastic Meta Model Fully Coupled With Ductile Damage
,” unpublished.
36.
Badreddine
,
H.
,
Saanouni
,
K.
, and
Dogui
,
A.
, “
On Numerical Integration of Finite Plastic Meta Model Fully Coupled With Ductile Damage
,” unpublished.
37.
Dogui
,
A.
, 1989, “
Plasticité anisotrope en grandes déformations
,” Thèse de doctorat d’état, Université Claude Bernard, Lyon I.
38.
Lemaitre
,
J.
, and
Chaboche
,
J. L.
, 1985,
Mécanique des Matériaux Solides
,
Dunod
,
Paris
.
39.
Lemaitre
,
J.
, 1992,
A Course of Damage Mechanics
,
Springer
,
Heidelberg
.
40.
Saanouni
,
K.
,
Forster
,
C.
, and
Ben Hatira
,
F.
, 1994, “
On the Anelastic Flow With Damage
,”
Int. J. Damage Mech.
1056-7895,
3
, pp.
140
169
.
41.
Hill
,
R.
, 1948, “
A Theory of Yielding and Plastic Flow of Anisotropic Metals
,”
Proc. R. Soc. London
0962-8444,
A193
, pp.
281
297
.
42.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
, 1998,
Computational Inelasticity
,
Springer
,
New York
.
43.
Bonnet
,
J.
, and
Wood
,
R. D.
, 1997, “
Nonlinear Continuum Mechanics for Finite Element Analysis
,”
Cambridge University Press
,
Cambridge, England
.
44.
Crisfield
,
M. A.
, 1997, “
Non-Linear Finite Element Analysis of Solids and Structures
,”
Wiley
,
Chichester
, Vol.
2
.
45.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
, 2000, “
Nonlinear Finite Elements for Continua and Structures
,”
Wiley
,
New York
.
46.
Lestriez
,
P.
,
Saanouni
,
K.
,
Mariage
,
J. F.
, and
Cherouat
,
A.
, 2004, “
Numerical Prediction of Damage in Metal Forming Process Including Thermal Effects
,”
Int. J. Damage Mech.
1056-7895,
13
(
1
) pp.
59
80
.
47.
Saanouni
,
K.
,
Mariage
,
J. F.
,
Cherouat
,
A.
, and
Lestriez
,
P.
, 2004, “
Numerical Prediction of Discontinuous Central Bursting in Axisymmetric Forward Extrusion by Continuum Damage Mechanics
,”
Comput. Struct.
0045-7949,
82
, pp,
2309
2332
.
48.
Cherouat
,
A.
,
Borouchaki
,
H.
,
Saanouni
,
K.
, and
Laug
,
P.
, 2005, “
Virtual Metal Forming With Damage Occurrence and Adaptive Remeshing
,”
Int. J. Form. Processes
1292-7775,
8
(
2
), pp.
311
332
.
49.
Khelifa
,
M.
,
Badreddine
,
H.
,
Belamri
,
N.
,
Gahbiche
,
M. A.
,
Saanouni
,
K.
,
Cherouat
,
A.
, and
Dogui
,
A.
, 2005, “
Effect of Anisotropic Plastic Flow on the Ductile Damage Evolution in Hydrobulging Test of Thin Sheet Metal
,”
Int. J. Form. Processes
1292-7775,
8
(
2
), pp.
271
289
.
50.
Borouchaki
,
H.
,
Laug
,
P.
,
Cherouat
,
A.
, and
Saanouni
,
K.
, 2005, “
Adaptive Remeshing in Large Plastic Strain With Damage
,”
Int. J. Numer. Methods Eng.
0029-5981,
63
, pp.
1
36
.
51.
Lestriez
,
P.
,
Saanouni
,
K.
, and
Cherouat
,
A.
, 2005, “
Simulation numérique de la coupe orthogonale par couplage thermique-comportement-endommagement en transformations finies
,”
Mécanique & Industries
,
6
, pp.
297
307
.
52.
Villon
,
P.
,
Borouchaki
,
H.
, and
Saanouni
,
K.
, 2002, “
Transfert de champs plastiquement admissibles
,”
C. R. Mec.
1631-0721,
330
, pp.
313
318
.
53.
Laug
,
P.
, and
Borouchaki
,
H.
, 2001, “
BL2D-V2: Mailleur adaptatif bidimensionnel de domaine à frontière variable
,” INRIA, Rapport Techninique.
54.
Col
,
A.
, 2002, Techniques de l’Ingénieur-Emboutissage des tôles, “
Importance des modes de déformation
,” BM 7510-2002.
You do not currently have access to this content.