The role of dilute small particles on the development of strain localization under uniaxial tension has been studied by finite element analysis using a plane stress model with two small hard particles embedded in Al matrix. The influence of particle alignment and interparticle spacing in a homogeneous and inhomogeneous matrix are investigated. When the matrix material is a homogeneous continuum, there are small localization strains when close packed and aligned along the loading direction. In the case of an inhomogeneous matrix with grains of different strengths represented by their Taylor factors, the location of localization band is insensitive to the interparticle spacing, but mainly determined by grain-level inhomogeneity. This is because the particles are dilute and small compared with the matrix grains. The particles, however, can decrease the localization strains when they straddle the localization band.

1.
Needleman
,
A.
, and
Tvergaard
,
V.
, 1994, “
Mesh Effects in the Analysis of Dynamic Ductile Crack-Growth
Eng. Fract. Mech.
0013-7944,
47
(
1
), pp.
75
91
.
2.
Hu
,
X. H.
,
Gasperini
,
M.
, and
Van Houtte
,
P.
, 2005, “
Strain Localization Observed During Shearing of Some Aluminum Alloys and Texture Softening Predicted by FC Taylor and Advanced Lamel Model
,”
Solid State Phenom.
1012-0394,
105
, pp.
371
378
.
3.
Hu
,
X. H.
,
Gasperini
,
M.
, and
Van Houtte
,
P.
, 2005, “
Texture Prediction of an AA3004 Aluminum Alloy With the Occurrence of Strain Localization During Simple Shear Using a Multiscale Modeling Procedure
,”
Mater. Sci. Forum
0255-5476,
495–497
, pp.
1103
1110
.
4.
Gasperini
,
M.
,
Pinn
,
C.
, and
Swiatnick
,
W.
, 1996, “
Microstructure Evolution and Strain Localization During Shear Deformation of an Aluminum Alloy
,”
Acta Mater.
1359-6454,
44
(
10
), pp.
4195
4208
.
5.
Duan
,
X.
,
Jain
,
M.
,
Metzger
,
D.
,
Kang
,
J.
,
Wilkinson
,
D. S.
, and
Embury
,
J. D.
, 2005, “
Prediction of Shear Localization During Large Deformation of a Continuous Cast Al-Mg Sheet
,”
Mater. Sci. Eng., A
0921-5093,
394
(
1–2
), pp.
192
203
.
6.
Wu
,
P. D.
, and
Lloyd
,
D. J.
, 2004, “
Analysis of Surface Roughening in AA6111 Automotive Sheet
,”
Acta Mater.
1359-6454,
52
(
7
), pp.
1785
1798
.
7.
Wu
,
P. D.
, and
Lloyd
,
D. J.
, 2006, “
Influence of Spatial Grain Orientation Distribution on Sheet Metal Necking
,”
Mater. Sci. Forum
0255-5476,
519–521
, pp.
103
110
.
8.
Delannay
,
L.
,
Jacques
,
P. J.
, and
Kalidindi
,
S. R.
, 2006, “
Finite Element Modeling of Crystal Plasticity with Grains Shaped as Truncated Octahedrons
,”
Int. J. Plast.
0749-6419,
22
(
10
), pp.
1879
1898
.
9.
Wu
,
P. D.
,
Lloyd
,
D. J.
,
Jain
,
M.
,
Neale
,
K. W.
, and
Huang
,
Y.
, 2004, “
Effects of Spatial Grain Orientation Distribution and Initial Surface Topography on Sheet Metal Necking
,”
Int. J. Plast.
0749-6419,
23
(
6
), pp.
1084
1104
.
10.
Kang
,
J. D.
,
Wilkinson
,
D. S.
,
Malakhov
,
D. V.
,
Halim
,
H.
,
Jain
,
M.
,
Embury
,
J. D.
, and
Mishra
,
R. K.
, 2007, “
Effect of Processing Route on the Spatial Distributions of Constituent Particles and Their Role in the Fracture Process in AA5754 Alloy Sheet Materials
,”
Mater. Sci. Eng., A
0921-5093,
456
(
1–2
), pp.
85
92
.
11.
Dao
,
M.
, and
Lie
,
M.
, 2001, “
A Micromechanics Study on Strain-Localization-Induced Fracture Initiation in Bending Using Crystal Plasticity Models
,”
Philos. Mag. A
0141-8610,
81
(
8
), pp.
1997
2020
.
12.
Hu
,
X. H.
,
Wilkinson
,
D. S.
,
Jain
,
M.
, and
Mishra
,
R. K.
, 2007, “
Modeling the Influence of Grain-Level Matrix Inhomogeneity on Strain Localization in the Presence of Hard Particles
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
15
(
8
), pp.
893
909
.
13.
Utsunomiya
,
H.
,
Sutcliffe
,
M. P. F.
,
Shercliff
,
H. R.
,
Bate
,
P.
, and
Miller
,
D. B.
, 2004, “
Evolution of Matt Surface Topography in Aluminum Pack Rolling—Part I: Model Development
,”
Int. J. Mech. Sci.
0020-7403,
46
(
9
), pp.
1349
1364
.
14.
Utsunomiya
,
H.
,
Sutcliffe
,
M. P. F.
,
Shercliff
,
H. R.
,
Bate
,
P.
, and
Miller
,
D. B.
, 2004, “
Evolution of Matt Surface Topography in Aluminum Pack Rolling—Part II: Effect of Material Properties
,”
Int. J. Mech. Sci.
0020-7403,
46
(
9
), pp.
1365
1375
.
15.
Van Houtte
,
P.
,
Li
,
S. Y.
,
Seefeldt
,
M.
, and
Delannay
,
L.
, 2005, “
Deformation Texture Prediction: From the Taylor Model to the Advanced Lamel model
,”
Int. J. Plast.
0749-6419,
21
(
3
), pp.
589
624
.
16.
Wu
,
P. D.
,
MacEwen
,
S. R.
,
Lloyd
,
D. J.
, and
Neale
,
K. W.
, 2004, “
A Mesoscopic Approach for Predicting Sheet Metal Formability
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
12
(
3
), pp.
511
527
.
17.
Chawla
,
N.
,
Ganesh
,
V. V.
, and
Wunsch
,
B.
, 2004, “
Three-Dimensional (3D) Microstructure Visualization and Finite Element Modeling of the Mechanical Behavior of SiC Particle Reinforced Aluminum Composites
,”
Scr. Mater.
1359-6462,
51
(
2
), pp.
161
165
.
18.
Drabek
,
T.
, and
Bohm
,
H. J.
, 2006, “
Micromechanical Finite Element Analysis of Metal Matrix Composites Using Nonlocal Ductile Failure Models
,”
Comput. Mater. Sci.
0927-0256,
37
(
1–2
), pp.
29
36
.
19.
Needleman
,
A.
, 1998, “
Material Rate Dependence and Mesh Sensitivity in Localization Problems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
67
(
1
), pp.
69
85
.
20.
Akeret
,
A.
, 1978, “
Investigation of Strain Localization in Aluminum Alloys
,”
Aluminium
54
, pp.
511
519
(in German).
21.
Wright
,
S. I.
, and
Field
,
D. P.
, 1998, “
Recent Studies of Local Texture and Its Influence on Failure
,”
Mater. Sci. Eng., A
0921-5093,
257
(
1
), pp.
165
170
.
22.
Raabe
,
D.
,
Sachtleber
,
M.
,
Zhao
,
Z.
,
Roters
,
F.
, and
Zaefferer
,
S.
, 1998, “
Micromechanical and Macromechanical Effects in Grain Scale Polycrystal Plasticity Experimentation and Simulation
,”
Acta Mater.
1359-6454,
49
(
17
), pp.
3433
3441
.
23.
Wilson
,
D. V.
,
Mirshams
,
A. R.
, and
Roberts
,
W. T.
, 1983, “
An Experimental-Study of the Effect of Sheet Thickness and Grain-Size on Limit Strains in Biaxial Stretching
,”
Int. J. Mech. Sci.
0020-7403,
25
(
12
), pp.
859
870
.
24.
Weck
,
A.
,
Wilkinson
,
D. S.
,
Tocla
,
H.
, and
Maire
,
E.
, 2006, “
2D and 3D Visualization of Ductile Fracture
,”
Adv. Eng. Mater.
1438-1656,
8
(
6
), pp.
469
472
.
25.
Mathur
,
K. K.
,
Needleman
,
A.
, and
Tvergaard
,
V.
, 2006, “
Three Dimensional Analysis of Dynamic Ductile Crack Growth in a Thin Plate
,”
J. Mech. Phys. Solids
0022-5096,
44
(
3
), pp.
439
459
.
26.
Tvergaard
,
V.
, and
Needleman
,
A.
, 2006, “
Three Dimensional Microstructural Effects on Plane Strain Ductile Crack Growth
,”
Int. J. Solids Struct.
0020-7683,
43
(
20
), pp.
6165
6179
.
You do not currently have access to this content.