The present study encompasses the thermoelastic effect of material anisotropy and curing stresses on interlaminar embedded elliptical delamination fracture characteristics in multiply laminated fiber-reinforced polymeric (FRP) composites. Two sets of full three-dimensional finite element analyses have been performed to calculate the displacements and interlaminar stresses along the delaminated interface responsible for the delamination onset and propagation. Modified crack closure integral methods based on the concepts of linear elastic fracture mechanics have been followed to evaluate the individual modes of strain energy release rates along the delamination front. It is shown that the individual modes of energy release rates vary along the delamination front depending on the ply sequence, orientation, and thermoelastic material anisotropy of the constituting laminae. This causes the anisotropic and non-self similar delamination propagation along the interface. The asymmetric and nonuniform variations in the nature of energy release rate plots obtained in a thermomechanical loading environment are significant when curing stress effects are included in the numerical analysis and hence should be taken into account in the designs of laminated FRP composite structures.

1.
Hahn
,
H. T.
, and
Pagano
,
N. J.
, 1975, “
Curing Stresses in Composite Laminates
,”
J. Compos. Mater.
0021-9983,
9
, pp.
91
106
.
2.
Whitney
,
J. M.
, and
Pagano
,
N. J.
, 1970, “
Shear Deformation in Heterogeneous Anisotropic Plates
,”
ASME J. Appl. Mech.
0021-8936,
32
, pp.
1031
1036
.
3.
Sih
,
G. C.
,
Chen
,
E. P.
,
Huang
,
S. L.
, and
Mcquillen
,
E. J.
, 1975, “
Material Characterization on the Fracture of Filament—Reinforced Composites
,”
J. Compos. Mater.
0021-9983,
9
, pp.
167
186
.
4.
Lekhnitski
,
S. G.
, 1981,
Theory of Elasticity of an Anisotropic Elastic Body
,
MIR Publishers (English translation)
, Moscow.
5.
Stout
,
M. G.
,
Koss
,
D. A.
,
Liu
,
C.
, and
Idasetima
,
J.
, 1999, “
Damage Development in Carbon/Epoxy Laminates Under Quasi-Static and Dynamic Loading
,”
Compos. Sci. Technol.
0266-3538,
59
, pp.
2339
2350
.
6.
Niu
,
K.
, and
Talreja
,
R.
, 2000, “
Modeling of Compressive Failure in Fiber Reinforced Composites
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
2405
2428
.
7.
Lagache
,
M.
,
Agbossou
,
A.
, and
Pastor
,
J.
, 1994, “
Role of Interphase on Elastic Behavior of Composite Materials: Theoretical and Experimental Analysis
,”
J. Compos. Mater.
0021-9983,
28
, pp.
1141
1157
.
8.
Fawaz
,
Z.
, and
Ellyin
,
F.
, 1994, “
Fatigue Failure Model for Fiber-Reinforced Materials Under General Loading Conditions
,”
J. Compos. Mater.
0021-9983,
28
, pp.
1432
1451
.
9.
Shahid
,
I.
, and
Chang
,
F.-K.
, 1995, “
An Accumulative Damage Model for Tensile and Shear Failures of Laminated Composite Plates
,”
J. Compos. Mater.
0021-9983,
29
, pp.
926
981
.
10.
Pradhan
,
B.
, and
Chakraborty
,
D.
, 2000, “
Fracture Behavior of FRP Composite Laminates With an Embedded Elliptical Delamination at the Interface
,”
J. Reinf. Plast. Compos.
0731-6844,
19
, pp.
1004
1023
.
11.
Davidson
,
B. D.
, 1994, “
Energy Release Rate Determination for Edge Delamination Under Combined In-Plane, Bending and Hygrothermal Loading. Part II—Two Symmetrically Located Delaminations
,”
J. Compos. Mater.
0021-9983,
28
, pp.
1371
1392
.
12.
Tay
,
T. E.
, and
Shen
,
F.
, 2001, “
Analysis of Delamination Growth in Laminated Composites With Consideration for Residual Thermal Stress Effects
,”
J. Compos. Mater.
0021-9983,
36
, pp.
1299
1320
.
13.
Abd-All
,
A. M.
,
Abd-alla
,
A. N.
, and
Zeidan
,
N. A.
, 2000, “
Thermal Stresses in a Non-homogeneous Orthotropic Elastic Multilayered Cylinder
,”
J. Therm. Stresses
0149-5739,
23
, pp.
413
428
.
14.
Rolfes
,
R.
, and
Rohwer
,
K.
, 2000, “
Integrated Thermal and Mechanical Analysis of Composite Plates and Shells
,”
Compos. Sci. Technol.
0266-3538,
60
, pp.
2097
2106
.
15.
Takeda
,
T.
,
Shindo
,
Y.
, and
Narita
,
F.
, 2004, “
Three-Dimensional Thermoelastic Analysis of Cracked Plain Weave Glass/Epoxy Composites at Cryogenic Temperatures
,”
Compos. Sci. Technol.
0266-3538,
64
, pp.
2353
2362
.
16.
Brewer
,
J. C.
, and
Lagace
,
P. A.
, 1988, “
Quadratic Stress Criterion for Initiation of Delamination
,”
J. Compos. Mater.
0021-9983,
22
, pp.
1141
1155
.
17.
Sun
,
C. T.
, and
Zhou
,
S. G.
, 1988, “
Failure of Quasi-Isotropic Composite Laminates With Free-Edges
,”
J. Compos. Technol. Res.
0884-6804,
7
, pp.
515
557
.
18.
O’Brien
,
T. K.
, 1984, “
Mixed-Mode Strain-Energy—Release Rate Effects on Edge Delamination of Composites
,”
Effects of Defects in Composite Materials
,
ASTM
, Philadelphia ASTM STP 836, pp.
125
142
.
19.
Williams
,
J. G.
, 1988, “
On the Calculation of Energy Release Rates for Cracked Laminates
,”
Int. J. Fract.
0376-9429,
36
, pp.
101
119
.
20.
Wang
,
H.
, and
Vu-Khanh
,
T.
, 1995, “
Fracture Mechanics and Mechanisms of Impact-Induced Delamination in Laminated Composites
,”
J. Compos. Mater.
0021-9983,
29
, pp.
156
177
.
21.
Dattaguru
,
B.
,
Venkatesha
,
Ramamurthy
,
T. S.
, and
Buchholz
,
F. G.
, 1994 “
Finite Element Estimates of Strain Energy Release Rate Components at the Tip of an Interface Crack Under Mode I Loading
,”
Eng. Fract. Mech.
0013-7944,
49
, pp.
211
228
.
22.
Wang
,
J. T.
, and
Raju
,
I. S.
, 1996, “
Strain Energy Release Rate Formulae for Skin-Stiffener Debond Modeled With Plate Elements
,”
Eng. Fract. Mech.
0013-7944,
54
, pp.
211
228
.
23.
Sankar
,
B. V.
, and
Sonik
,
V.
, 1995, “
Point-Wise Energy Release Rate in Delaminated Plates
,”
AIAA J.
0001-1452,
33
, pp.
1312
1318
.
24.
Finn
,
S. R.
, and
Springer
,
G. S.
, 1993, “
Delaminations in Composite Plates Under Transverse Static or Impact Loads—A Model
,”
Compos. Struct.
0263-8223,
23
, pp.
177
190
.
25.
Irwin
,
G. R.
, 1957, “
Analysis of Stresses and Strain Near the End of a Crack Traversing a Plate
,”
ASME J. Appl. Mech.
0021-8936,
24
, pp.
361
364
.
26.
Rybicki
,
E. F.
,
Schmueser
,
D. W.
, and
Fox
,
J.
, 1977, “
Fracture Mechanics of Delamination Problems in Composite Materials
,”
J. Compos. Mater.
0021-9983,
11
, pp.
470
487
.
27.
Rinderknecht
,
S.
, and
Kröplin
,
B.
, 1995, “
A Finite Element Model for Delamination in Composite Plates
,”
Mech. Compos. Mater. Struct.
1075-9417,
2
, pp.
19
47
.
28.
Glaessgen
,
E. H.
,
Riddell
,
W. T.
, and
Raju
,
I. S.
, 1998, “
Effect of Shear Deformation and Continuity on Delamination Modeling With Plate Elements
,”
Proceedings of the AIAA/ASME/ASCE/AHS/ASC 39th Structures, Structural Dynamics and Materials Conference
, AIAA, Washington, DC, AIAA Paper No. AIAA-98-2023-CP.
29.
Klüg
,
J.
,
Wu
,
X. X.
, and
Sun
,
C. T.
, 1996, “
Efficient Modeling of Postbuckling Delamination Growth in Composite Laminates Using Plate Elements
,”
AIAA J.
0001-1452,
34
, pp.
178
184
.
30.
Krüeger
,
R.
, and
O’Brien
,
T. K.
, 2001, “
A Shell/3D Modeling Technique for the Analysis of Delaminated Composite Laminates
,”
Composites, Part A
1359-835X,
32
, pp.
25
44
.
31.
Krüeger
,
R.
,
Mingüet
,
P. J.
, and
O’Brien
,
T. K.
, 2003, “
Implementation of Interlaminar Fracture Mechanics in Design: An Overview
,” 14th International Conference on Composite Materials (ICCM-14), San Diego.
You do not currently have access to this content.