Prismatic sandwich specimens of various sizes, geometrically scaled in the ratio 1:2:4:8, are subjected to eccentric axial compression and tested to failure. The sandwich core consists of a closed-cell polyvinyl chloride foam, and the facesheets are woven glass-epoxy laminates, scaled by increasing the number of plies. The test results reveal a size effect on the mean nominal strength, which is strong enough to require consideration in design. The size effect observed is fitted with the size effect law of the energetic (deterministic) size effect theory. However, because of inevitable scatter and limited testing range, the precise form of the energetic size effect law to describe the test results is not unambiguous. The Weibull-type statistical size effect on the mean strength is ruled out because the specimens had small notches which caused the failure to occur in only one place in the specimen, and also because the observed failure mode was kink band propagation, previously shown to cause energetic size effect. Various fallacies in previous applications of Weibull theory to composites are also pointed out.

1.
Allen
,
H. G.
, 1969, Analysis and Design of Sandwich Panels, Pergamon Press, London.
2.
Daniel
,
I. M.
, and
Ishai
,
O.
, 2005, Engineering Mechanics of Composite Materials, 2nd ed.,
Oxford University Press
, New York.
3.
Daniel
,
I. M.
,
Gdoutos
,
E. E.
,
Wang
,
K.- A.
, and
Abot
,
J. L.
, 2002, “
Failure Modes of Composite Sandwich Beams
,”
Int. J. Damage Mech.
1056-7895
11
(
4
), pp.
309
334
.
4.
Plantema
,
F. J.
, 1966, Sandwich Construction. The Bending and Buckling of Sandwich Beams, Plates and Shells, Wiley, New York.
5.
Tsai
,
S. W.
, and
Hahn
,
H. T.
, 1980, Introduction to Composite Materials, Technomic Publ. Co., Westport, Connectiut.
6.
Zenkert
,
D.
, 1997, The Handbook of Sandwich Construction, Engineering Materials Advisory Services (EMAS), Warley, UK.
7.
Hansen
,
U.
, 1998, “
Compression Behavior of FRP Sandwich Specimens with Interface Debonds
,”
J. Compos. Mater.
0021-9983
32
(
4
), pp.
335
360
.
8.
Bažant
,
Z. P.
,
Daniel
,
I. M.
, and
Li
,
Zhengzhi, 1996, “
Size Effect and Fracture Characteristics of Composite Laminates
,”
ASME J. Eng. Mater. Technol.
0094-4289
118
(
3
), pp.
317
324
.
9.
Bažant
,
Z. P.
,
Kim
,
J.- J. H.
Kim
,
Daniel
,
I. M.
,
Becq-Giraudon
,
E.
, and
Goangseup
,
Zi
, 1999, “
Size Effect on Compression Strength of Fiber composites Failing by Kink Band Propagation
,”
Int. J. Fract.
0376-9429
95
, pp.
103
141
.
10.
Bažant
,
Z. P.
, 2002, “
Size Effect Theory and its Application to Fracture of Fiber Composites and Sandwich Plates
,” Continuum Damage Mechanics of Materials and Structures,
O.
Allix
and
F.
Hild
, eds., Elsevier, Amsterdam, pp.
353
381
.
11.
Bažant
,
Z. P.
,
Zhou
,
Y.
,
Zi
,
G.
, and
Daniel
,
I. M.
, 2003, “
Size Effect and Asymptotic Matching Analysis of Fracture of Closed-Cell Polymeric Foam
,”
Int. J. Solids Struct.
0020-7683
40
, pp.
7197
7217
.
12.
Bažant
,
Z. P.
,
Zhou
,
Y.
,
Novák
,
D.
, and
Daniel
,
I. M.
, 2004, “
Size Effect on Flexural Strength of Fiber-Composite Laminate
,”
ASME J. Eng. Mater. Technol.
0094-4289
126
(
Jan.
), pp.
29
37
.
13.
Bažant
,
Z. P.
,
Zhou
,
Y.
,
Daniel
,
I. M.
,
Corner
,
F.
, and
Yu
,
Q.
, 2006, “
Size Effect on Strength of Laminate-Foam Sandwich Plates
,” ASME J. Mater. & Technol. (in press).
14.
Wisnom
,
M. R.
, 1991, “
Relationship Between Size Effect and Strength Variability in Unidirectional Carbon Fiber-Epoxy
,”
Composites
0010-4361,
22
, pp.
47
52
.
15.
Wisnom
,
M. R.
, and
Atkinson
,
J. A.
, 1997, “
Reduction in Tensile and Flexural Strength of Unidirectional Glass Fiber-Epoxy with Increasing Specimen Size
,”
Civ. Eng. Syst.
1028-6608,
38
, pp.
405
412
.
16.
Lavoie
,
J. A.
,
Soutis
,
C.
, and
Morton
,
J.
, 2000, “
Apparent Strength Scaling in Continuous Fiber Composite Laminates
,”
Compos. Sci. Technol.
0266-3538,
60
, pp.
283
299
.
17.
Olurin
,
O. B.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
, 2001, “
Tensile and Compressive Failure of Notched Cellular Foams
,”
Adv. Eng. Mater.
1438-1656,
3
(
1–2
), pp.
55
58
.
18.
Shipsha
,
A.
,
Burman
,
M.
, and
Zenkert
,
D.
, 2000, “
On Mode I Fatigue Crack Growth in Foam Core Materials for Sandwich Structures
,”
J. Sandwich Struct.
,
2
, pp.
103
116
.
19.
Bažant
,
Z. P.
, 1984, “
Size Effect in Blunt Fracture: Concrete, Rock, Metal
,”
J. Eng. Mech.
0733-9399,
110
(
4
),
518
535
.
20.
Bažant
,
Z. P.
, 2002, Scaling of Structural Strength, Hermes Penton Science (Kogan Page Science), London (also: French translation with updates, Hermes, Paris, 2004).
21.
Bažant
,
Z. P.
, 2004, “
Scaling Theory for Quasibrittle Structural Failure
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424
101
(
37
), pp.
13397
13399
.
22.
Bažant
,
Z. P.
, and
Planas
,
J.
, 1998, Fracture and Size Effect in Concrete and Other Quasibrittle Materials, CRC Press, Boca Raton.
23.
Bažant
,
Z. P.
, 2004, “
Probability Distribution of Energetic-Statistical Size Effect in Quasibrittle Fracture
,”
Probab. Eng. Mech.
0266-8920
19
(
4
), pp.
307
319
.
24.
Jackson
,
K. E.
, 1990, “
Scaling Effects in the Static and Dynamic Response of Graphite-Epoxy Beam Columns
,” NASA TM, 102697.
25.
Johnson
,
D. P.
,
Morton
,
J.
,
Kellas
,
S.
, and
Jackson
,
K. E.
, 2000, “
Size Effect in Scaled Fiber Composites Under Four-Point Flexural Loading
,”
AIAA J.
0001-1452,
38
(
6
), pp.
1047
1054
.
26.
Bažant
,
Z. P.
, and
Xiang
,
Y.
, 1997, “
Size Effect in Compression Fracture: Splitting Crack Band Propagation
,”
J. Eng. Mech.
0733-9399,
123
(
2
), pp.
162
172
.
27.
Soutis
,
C.
,
Fleck
,
N. A.
, and
Smith
,
N. A.
, 1993, “
Failure Prediction Technique for Compression Loaded Carbon Fibre-Epoxy Laminate With Open Holes
,”
J. Compos. Mater.
0021-9983
25
(
11
), pp.
1476
1479
.
28.
Bayldon
,
J. M.
,
Schubel
,
P.
, and
Daniel
,
I. M.
, 2003, “
Measurement of Void Content in Composites Through Image Analysis
” 18th Annual Technical Conference, Oct 20–22, Gainesville, FL, American Society for Composites.
29.
Bayldon
,
J. M.
, and
Daniel
,
I. M.
, 2004, “
Development of an Eccentric Loaded Specimen for the Study of Compressive Failure in Glass Fiber Composites
,” SEM X International Congress on Experimental and Applied Mechanics, Costa Mesa, June 7–10, Society for Experimental Mechanics, Bethel, CT.
30.
Weibull
,
W.
, 1939, “
The Phenomenon of Rupture in Solids
,” Proc., R. Swedish Institute of Engineering Research (Ingenioersvetenskaps Akad. Handl.),
153
, pp.
1
55
.
31.
Weibull
,
W.
, 1951, “
A Statistical Distribution Function of Wide Applicability
,”
ASME J. Appl. Mech.
0021-8936,
18
, pp.
293
297
.
32.
Mariotte
,
E.
, 1686, Traité du Mouvement des Eaux, posthumously edited by
M.
de la Hire
; Engl. transl. by
J. T.
Desvaguliers
, London (1718), p.
249
; also Mariotte’s collected works, 2nd ed., The Hague (1740).
33.
Fisher
,
R. A.
, and
Tippett
,
L. H. C.
, 1928, “
Limiting Forms of the Frequency Distribution of the Largest and Smallest Member of a Sample
,”
Proc. Cambridge Philos. Soc.
0068-6735
24
,
180
190
.
34.
Zi
,
G.
, and
Bažant
,
Z. P.
, 2003, “
Eigenvalue Method for Computing Size Effect of Cohesive Cracks with Residual Stress, with Application to Kink Bands in Composites
,”
Int. J. Eng. Sci.
0020-7225
41
(
13–14
), pp.
1519
1534
.
35.
Bažant
,
Z. P.
, and
Al
, 2004, “
RILEM TC QFS Quasibrittle Fracture Scaling and Size Effect—Final Report
,”
Mater. Struct.
1359-5997,
37
(
272
), pp.
547
568
.
36.
Bažant
,
Z. P.
, and
Xi
,
Y.
, 1991, “
Statistical Size Effect in Quasi-Brittle Structures: II. Nonlocal theory
,”
J. Eng. Mech.
0733-9399
117
(
11
), pp.
2623
2640
.
37.
Bažant
,
Z. P.
, and
Novák
,
D.
, 2000a, “
Probabilistic Nonlocal Theory for Quasi-Brittle Fracture Initiation and Size Effect. I. Theory and II. Application
,”
J. Eng. Mech.
0733-9399,
126
(
2
), pp.
166
185
.
38.
Bažant
,
Z. P.
, and
Novák
,
D.
, 2000b, “
Energetic-Statistical Size Effect in Quasi-Brittle Failure at Crack Initiation
,”
ACI Mater. J.
0889-325X,
97
(
3
), pp.
381
392
.
You do not currently have access to this content.