The effect of torsional mean stress on the fatigue behavior of glass fiber-reinforced polyester (GFRP) is studied by testing thin-walled, woven-roving tubular specimens with two fiber orientations, [±45°]2s and [0,90°]2s, at negative stress ratios (R),R=1,0.75,0.5,0.25, 0. The [±45°]2s specimens were found to have higher fatigue strength than the [0,90°]2s specimens at all stress ratios. This is attributed to the difference in local stress components, the [±45°]2s specimens being subjected to tension-compression local stress components, while the [0,90°]2s specimens being subjected to pure local shear stress. For the studied stress ratios; the mean stress component had a detrimental effect on the amplitude component for the [±45°]2s specimens; while it was ineffective for the [0,90°]2s specimens in a certain region in the mean-amplitude diagram, region (1), then it had a detrimental effect in the rest of the diagram, region (2). The SN curves for positive stress ratios were extrapolated from those for negative stress ratios, which were found experimentally, for the [0,90°]2s specimens. The positive stress ratio points, having the same local stress state as the negative ones, showed an acceptable behavior tending to decrease the amplitude component for the same life.

1.
Shigley
,
Joseph
E.
, 1986,
Mechanical Engineering Design
,
McGraw-Hill
, New York (ISBN: 0-07-056898-7).
2.
El-Kadi
H.
and
Ellyin
F.
, 1994, “
Effect of stress ratio on the Fatigue of Unidirectional Fiberglass–Epoxy Composite Laminae
,”
J. Compos. Mater.
0021-9983,
25
(
10
), pp.
917
924
.
3.
Bradely
A. Lerch
Model Determined for Predicting Fatigue Lives of Metal Matrix Composites Under Mean Stresses
” (www.grc.nasa.govwww.grc.nasa.gov).
4.
Rotem
A.
, 1990, “
Tensile and Compressive Failure Modes of Laminated Composites Loaded by Fatigue with Different Mean Stress
,”
J. Compos. Technol. Res.
0884-6804,
12
(
4
), pp.
201
208
.
5.
Sharara
A. I.
, 1997, “
Effect of Stress Ratio on Fatigue Characteristics of Woven-Roving Glass Reinforced Polyester
,” MSc. Thesis, Alexandria University, Egypt.
6.
Conle
A.
and
Ingall
J. P.
, 1985, “
Effects of Mean Stress on the Fatigue of Composite Materials
,”
J. Compos. Technol. Res.
0884-6804,
7
(
1
), pp.
3
11
.
7.
Krempl
E.
,
Elzey
D. M.
,
Hong
B. Z.
,
Ayar
T.
, and
Loewy
R. G.
, 1988, “
Uniaxial and Biaxial fatigue Properties of Thin-Walled Composite Tubes
,”
J. Am. Helicopter Soc.
0002-8711,
33
(
3
), pp.
3
10
.
8.
Abouelwafa
M. N.
,
Hamdy
A. H.
, and
Showaib
E. A.
, 1989, “
A New Testing Machine for Fatigue Under Combined Bending and Torsion Acting Out-of-Phase
,”
Alexandria Engineering Journal
,
28
(
4
), pp.
113
130
.
9.
El-Midany
A. A.
, 1995, “
Fatigue of Woven-Roving Glass Fibre Reinforced Polyester Under Combined Bending and Torsion
,” PhD. Thesis, Alexandria University, Egypt.
10.
Mohamed
M. Yousef
, 2001, “
The Inclusion Effect on the Fatigue Behavior of Woven-Roving GRP Composite Materials
,” MSc. Thesis, Alexandria University, Egypt.
11.
Hyer
,
M. W.
, 1998,
Stress Analysis of Fiber-Reinforced Composite Materials
,
McGraw-Hill
, New York (ISBN: 0-07-016700-1).
12.
Jones
,
Robert
,
M.
1975,
Mechanics of Composite Materials
,
McGraw-Hill Kogakusha, Ltd.
, New York (ISBN: 0-07-032790-4).
13.
Latour
R. A.
,
Black
J.
, and
Miller
B.
, 1989, “
Fatigue Behavior Characterization of the Fiber–Matrix Interface
,”
J. Mater. Sci.
0022-2461,
24
(
10
), pp.
3616
3620
.
14.
James
A. Jacobs
and
Thomas
F. Kilduff
, 1985
Engineering Materials Technology
,
Prentice-Hall
, Englewood Cliffs, New Jersey (ISBN: 0-13-278045-301).
15.
Cahn
,
R. W.
,
Thompson
,
M. W.
, and
Ward
,
I. M.
, 1981,
An Introduction to Composite Materials
,
Cambridge University Press
, Cambridge (ISBN: 0-521-23991-5).
16.
Talreja
,
R.
, 1981, “
Fatigue of Composite Materials: Damage Mechanisms and Fatigue Life Diagrams
,”
Proc. R. Soc. London, Ser. A
1364-5021,
378
, pp.
461
475
.
17.
Ramesh
Talreja
, 1987,
Fatigue of Composite Materials
,
Technomic Publishing Co., Inc.
, (ISBN: 87762-516-6).
18.
Wang
S. S.
,
Chim
E. S. M.
,
Socie
D. F.
,
Gauchel
J. V.
, and
Olinger
J. L.
, 1982, “
Tensile and Torsional Fatigue of Fibre-reinforced Composites at Cryogenic Temperatures
,”
J. Eng. Mater. Technol.
0094-4289,
104
, pp.
121
127
.
19.
Reifsnider
,
K. L.
, 1991
Fatigue of Composite Materials
,
Elsevier Science Publishers
, New York (ISBN: 0-444-70507-4).
20.
Mahfouz
H.
, 1996, “
Response of Resin Transfer Moulded (RTM) Composites Under Reversed Cyclic Loading
,”
J. Eng. Mater. Technol.
0094-4289,
118
(
1
), pp.
49
57
.
21.
Hashin
Z.
, 1981, “
Fatigue Failure Criteria for Unidirectional Fibre Composites
,”
J. Appl. Mech.
0021-8936,
48
(
4
), pp.
846
852
.
22.
Owen
M. J.
and
Griffiths
J. R.
, 1978, “
Evaluation of Biaxial Stress Failure for a GFRP Under Static and Fatigue Loading
,”
J. Mater. Sci.
0022-2461,
13
(
7
), pp.
1521
1537
.
You do not currently have access to this content.