This paper examines the effects of laser peening on Alloy 22 (UNS N06022), which is the proposed material for use as the outer layer on the spent-fuel nuclear waste canisters to be stored at Yucca Mountain. Stress corrosion cracking (SCC) is a primary concern in the design of these canisters because tensile residual stresses will be left behind by the closure weld. Alloy 22 is a nickel-based material that is particularly resistant to corrosion; however, there is a chance that stress corrosion cracking could develop given the right environmental conditions. Laser peening is an emerging surface treatment technology that has been identified as an effective tool for mitigating tensile redisual stresses in the storage canisters. The results of laser-peening experiments on Alloy 22 base material and a sample 33 mm thick double-V groove butt-weld made with gas tungsten arc welding (GTAW) are presented. Residual stress profiles were measured in Alloy 22 base material using the slitting method (also known as the crack-compliance method), and a full 2D map of longitudinal residual stress was measured in the sample welds using the contour method. Laser peening was found to produce compressive residual stress to a depth of 3.8 mm in 20 mm thick base material coupons. The depth of compressive residual stress was found to have a significant dependence on the number of peening layers and a slight dependence on the level of irradiance. Additionally, laser peening produced compressive residual stresses to a depth of 4.3 mm in the 33 mm thick weld at the center of the weld bead where high levels of tensile stress were initially present.

1.
Bodvarsson
,
G. S.
,
Boyle
,
W.
,
Patterson
,
R.
, and
Williams
,
D.
,
1999
, “
Overview of Scientific Investigations at Yucca Mountain—The Potential Repository for High-Level Nuclear Waste
,”
J. Containment Tech.
,
38
, pp.
3
24
.
2.
Repository Safety Strategy: US Department of Energy’s Strategy to Protect Public Health and Safety After Closure of a Yucca Mountain Repository, Revision 1, US Dept. of Energy.
3.
Farmer, J., McCright, D., Gdowski, G., Wang, F., Summers, T., Bedrossian, P., Horn, J., Lian, T., Estill, J., Lingenfelter, A., and Halsey, W., 2000, “General and Localized Corrosion of Outer Barrier of High-Level Waste Container in Yucca Mountain,” Transportation, Storage, and Disposal of Radioactive Materials Pressure Vessles and Piping, Seattle, WA, R. S. Hafner, ed., ASME, Vol. 408, pp. 53–70.
4.
Farmer, J., Lu, S., Summers, T., McCright, D., Lingenfelter, A., Wang, F., Estill, J., Hackel, L., Chen, H.-L., Gordon, G., Pasupathi, V., Andersen, P., Tang, S., and Herrera, M., 2000, “Modeling and Mitigation of Stress Corrosion Cracking in Closure Welds of High-Level Waste Container for Yucca Mountain,” Transportation, Storage, and Disposal of Radioactive Materials Pressure Vessles and Piping, Seattle, WA, R. S. Hafner, ed., ASME, Vol. 408, pp. 71–81.
5.
Fairland
,
B. P.
,
Wilcox
,
B. A.
,
Gallagher
,
W. J.
, and
Williams
,
D. N.
,
1972
, “
Laser Shock-Induced Microstructural and Mechanical Property Changes in 7075 Aluminum
,”
J. Appl. Phys.
,
43
(
9
), pp.
3893
3895
.
6.
Fairand
,
B. P.
,
Clauer
,
A. H.
, and
Jung
,
R. G.
,
1974
, “
Quantitative Assessment of Laser-Induced Stress Waves Generated at Confined Surface
,”
Appl. Phys. Lett.
,
25
(
8
), pp.
431
433
.
7.
Clauer
,
A. H.
,
Fairand
,
B. P.
, and
Wilcox
,
B. A.
,
1976
, “
Laser Shock Hardening of Weld Zones in Aluminum Alloys
,”
Metall. Trans. A
,
8A
, pp.
1871
1876
.
8.
Fairland
,
B. P.
, and
Clauer
,
A. H.
,
1976
, “
Use of Laser Generated Shocks to Improve the Properties of Metals and Alloys
,”
Indust. Appli. High Power Laser Tech.
,
86
, pp.
112
119
.
9.
Fairland
,
B. P.
, and
Clauer
,
A. H.
,
1976
, “
Effect of Water and Paint Coatings on the Magnitude of Laser-Generated Shocks
,”
Opt. Commun.
,
18
(
4
), pp.
588
591
.
10.
Clauer
,
A. H.
,
Fairand
,
B. P.
, and
Wilcox
,
B. A.
,
1977
, “
Pulsed Laser Induced Deformation in an Fe-3 Wt Pct Si Alloy
,”
Metall. Trans. A
,
8A
, pp.
119
125
.
11.
Fairand
,
B. P.
, and
Clauer
,
A. H.
,
1979
, “
Laser Generation of High Amplitude Stress Waves in Materials
,”
J. Appl. Phys.
,
50
(
3
), pp.
1497
1502
.
12.
Peyre
,
P.
,
Braham
,
C.
,
Ledion
,
J.
,
Berthe
,
L.
, and
Fabbro
,
R.
,
2000
, “
Corrosion Reactivity of Laser-Peened Steel Surfaces
,”
J. Mater. Eng. Perform.
,
9
(
6
), pp.
656
662
.
13.
Zhuang
,
W. Z.
, and
Halford
,
G. R.
,
2001
, “
Investigation of residual stress relaxation under cyclic load
,”
Int. J. Fatigue
,
23
, pp.
S31–S37
S31–S37
.
14.
Peyre
,
P.
,
Fabbro
,
R.
,
Merrien
,
P.
, and
Lieurade
,
H. P.
,
1996
, “
Laser Shock Processing of Aluminum Alloys: Application to High Cycle Fatigue Behavior
,”
Mater. Sci. Eng., A
,
210
, pp.
102
113
.
15.
Montross
,
C. S.
,
Florea
,
V.
, and
Swain
,
M. V.
,
2001
, “
The Influence of Coatings on Subsurface Mechanical Properties of Laser Peened 2011-T3 Aluminum
,”
J. Mater. Sci.
,
36
, pp.
1801
1807
.
16.
Fabbro
,
R.
,
Fournier
,
J.
,
Ballard
,
P.
,
Devaux
,
D.
, and
Virmont
,
J.
,
1990
, “
Physical Study of Laser-Produced Plasma in Confined Geometry
,”
J. Appl. Phys.
,
68
(
2
), pp.
775
784
.
17.
Devaux
,
D.
,
Fabbro
,
R.
,
Tollier
,
L.
, and
Bartnicki
,
E.
,
1993
, “
Generation of shock waves by laser-induced plasma in confined geometry
,”
J. Appl. Phys.
,
74
(
4
), pp.
2268
2273
.
18.
Schmidt-Uhlig
,
R.
,
Karlitschek
,
P.
,
Yoda
,
M.
,
Sano
,
Y.
, and
Marowsky
,
G.
,
2000
, “
Laser Shock Processing With 20 MW Laser Pulses Delivered by Optical Fibers
,”
Eur. Phys. J. A
,
9
, pp.
235
238
.
19.
Fabbro
,
R.
,
Peyre
,
P.
,
Berthe
,
L.
, and
Scherpereel
,
X.
,
1998
, “
Physics and Applications of Laser-shock Processing
,”
J. Laser Appl.
,
10
(
6
), pp.
265
279
.
20.
Smith
,
P. R.
,
Shepard
,
M. J.
,
Prevey
,
P. S.
, and
Clauer
,
A. H.
,
2000
, “
Effect of Power Density and Pulse Repetition on Laser Shock Peening of Ti-6Al-4V
,”
J. Mater. Eng. Perform.
,
9
(
1
), pp.
33
37
.
21.
Dane
,
C. B.
,
Hackel
,
L. A.
,
Daly
,
J.
, and
Harrisson
,
J.
,
2000
, “
High Power Laser for Peening of Metals Enabling Production Technology
,”
Mater. Manuf. Processes
,
15
(
1
), pp.
81
96
.
22.
Dane
,
C. B.
,
Zapata
,
L. E.
,
Neuman
,
W. A.
,
Norton
,
M. A.
, and
Hackel
,
L. A.
,
1995
, “
Design and Operation of a 150 W Near Diffraction-Limited Laser Amplifier With SBS Wavefront Correction
,”
IEEE J. Quantum Electron.
,
31
(
1
), pp.
148
163
.
23.
Vaidyanathan
,
S.
, and
Finnie
,
I.
,
1971
, “
Determination of Residual Stresses From Stress Intensity Factor Measurements
,”
ASME J. Basic Eng.
,
93
, pp.
242
246
.
24.
Prime
,
M. B.
,
1999
, “
Residual Stress Measurement by Successive Extension of a Slot: The Crack Compliance Method
,”
Appl. Mech. Rev.
,
52
(
2
), pp.
75
96
.
25.
Prime
,
M. B.
,
2001
, “
Cross-Sectional Mapping of Residual Stresses by Measuring the Surface Contour After a Cut
,”
ASME J. Eng. Mater. Technol.
,
123
, pp.
162
168
.
26.
Masse
,
J.-E.
, and
Barreau
,
G.
,
1995
, “
Laser Generation of Stress Waves in Metal
,”
Surf. Coat. Technol.
,
70
(
2–3
), pp.
231
234
.
27.
Hill
,
M. R.
, and
Lin
,
W. Y.
,
2002
, “
Residual stress measurement in a ceramic-metallic graded material
,”
ASME J. Eng. Mater. Technol.
,
124
(
2
), pp.
185
191
.
28.
J. Lu, ed., 1996, Handbook of Measurement of Residual Stresses, Prentice-Hall, Englewood Cliffs, NJ.
29.
Krawitz
,
A. D.
, and
Winholtz
,
R. A.
,
1994
, “
Use of Position-Dependent Stress-free Standards for Diffraction Stress Measurements
,”
Mater. Sci. Eng., A
,
185
, pp.
123
130
.
30.
Lorentzen
,
T.
, and
Ibsø
,
J. B.
,
1995
, “
Neutron Diffraction Measurements of Residual Strains in Offshore Welds
,”
Mater. Sci. Eng., A
,
197
, pp.
209
214
.
31.
Prime, M. B., Hughes, D. J., and Webster, P. J., 2001, “Weld Application of a New Method for Cross-Sectional Residual Stress Mapping,” 2001 SEM Annual Conf. on Experimental and Applied Mechanics, Portland, OR, pp. 608-611.
You do not currently have access to this content.