The tensile deformation and rotating-bending fatigue properties of a highelastic thin wire, a superelastic thin wire and a superelastic thin tube, all made of NiTi alloys, were investigated experimentally. The results obtained are summarized as follows: (1) The stress-strain curve of the highelastic thin wire is approximately linear up to a strain of 4 percent with a stress of 1400 MPa and shows little dependency on temperature and strain rate; (2) The modulus of elasticity for the initial loading stage of both the highelastic wire and the superelastic tube is low, showing superior bending flexibility as is necessary for medical applications; (3) The slopes of the strain-life curves of the alloys are steep in the low-cycle fatigue region (the strain amplitude of the fatigue limit is in the region of 0.6–0.8 percent); and (4) In the tube, fatigue cracking initiates on the rougher inner surface, resulting in a shorter fatigue life than in the case of the wire.

1.
Funakubo, H., ed., 1987, Shape Memory Alloys, Gordon and Breach Science Pub.
2.
Duerig, T. W., Melton, K. N., Stockel, D., and Wayman, C. M., eds., 1990, Engineering Aspects of Shape Memory Alloy, Butterworth-Heinemann.
3.
Otsuka, K., and Wayman, C. M., eds., 1998, Shape Memory Materials, Cambridge University Press.
4.
Saburi, T., ed., 2000, Shape Memory Materials, Trans Tech Pub.
5.
Chu, Y. Y., and Zhao, L. C., eds., 2002, Shape Memory Materials and Its Applications, Trans Tech Pub.
6.
Furukawa Catalogue, 2000, No. 2E-GISI-00-21.
7.
Holtz
,
R. L.
,
Sadananda
,
K.
, and
Imam
,
M. A.
,
1999
, “
Fatigue Thresholds of Ti-Ni Alloy Near the Shape Memory Transition Temperature
,”
Int. J. Fatigue
,
21
, pp.
137
145
.
8.
McKelvey
,
A. L.
, and
Ritchie
,
R. O.
,
2001
, “
Fatigue-Crack Growth Behavior in the Superelastic and Shape-Memory Alloy Nitinol
,”
Metall. Mater. Trans. A
,
32A
, pp.
731
743
.
9.
Tobushi
,
H.
,
Tanaka
,
K.
,
Kimura
,
K.
,
Hori
,
T.
, and
Sawada
,
T.
,
1992
, “
Stress-Strain-Temperature Relationship Associated With the R-Phase Transformation in TiNi Shape Memory Alloy
,”
JSME Int. J., Ser. I
,
35-3
, pp.
278
284
.
10.
Tobushi
,
H.
,
Hachisuka
,
T.
,
Hashimoto
,
T.
, and
Yamada
,
S.
,
1998
, “
Cyclic Deformation and Fatigue of a TiNi Shape-Memory Alloy Wire Subjected to Rotating Bending
,”
ASME J. Eng. Mater. Technol.
,
120
, pp.
64
70
.
11.
Shaw
,
J. A.
, and
Kyriakides
,
S.
,
1995
, “
Thermomechanical Aspects of NiTi
,”
J. Mech. Phys. Solids
,
43-8
, pp.
1243
1281
.
12.
Kyriakides, S., 2001, “Propagating Instabilities in Materials,” Materials Science for the 21st Century, A, pp. 316–325, Soc. Mater. Science., Japan.
13.
Tanaka
,
K.
,
Kobayashi
,
S.
, and
Sato
,
Y.
,
1986
, “
Thermomechanics of Transformation Pseudoelasticity and Shape Memory Effect in Alloys
,”
Intern. J. Plasticity
,
2
, pp.
59
72
.
14.
Tobushi
,
H.
,
Takata
,
K.
,
Shimeno
,
Y.
,
Nowacki
,
W. K.
, and
Gadaj
,
S. P.
,
1999
, “
Influence of Strain Rate on Superelastic Behavior of TiNi Shape Memory Alloy
,”
Pro. Instn. Mech. Engrs.
,
213, Part L
, pp.
93
102
.
15.
“Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters,” JIS B 0601 (ISO 4287).
16.
Miyazaki
,
S.
,
Otsuka
,
K.
, and
Suzuki
,
Y.
,
1981
, “
Pseudoelasticity and Deformation Behavior in a Ti-50.6at%Ni Alloy
,”
Scr. Mater.
,
15
, pp.
287
292
.
You do not currently have access to this content.