It is shown that, under certain conditions, simultaneous improvement of vibration damping capacity and interlaminar fracture toughness in composite laminates can be achieved by using polymeric interleaves between the composite laminae. The specific case of Mode II interlaminar fracture toughness and flexural damping capacity of interleaved composite laminates is studied. Graphite/epoxy, E-glass/epoxy and E-glass/polyetherimide composite laminates with polymeric interleaves of several different thicknesses and materials were tested using both the end notch flexure (ENF) test for Mode II fracture toughness and the impulse-frequency response test for flexural damping capacity. The Mode II energy release rate GIIc for all three composites increased linearly with increasing interleaf thickness up to a critical thickness, then dropped off with further increases in thickness. The damping loss factor η for all three composites increased linearly with increasing interleaf thickness up to the maximum thickness. Analytical models for predicting the influence of interleaves on GIIc and η are developed, along with a hypothesis for the critical thickness effect with regard to fracture toughness.

1.
Gibson, R. F., 1994, Principles of Composite Material Mechanics, McGraw-Hill, New York.
2.
Gibson
,
R. F.
,
1992
, “
Damping Characteristics of Composite Materials and Structures
,”
J. Mater. Eng. Perform.
,
1
, pp.
11
20
.
3.
Kim
,
J. K.
, and
Mai
,
Y. W.
,
1991
, “
High Strength, High Fracture Fiber Composites with Interface Control—A Review
,”
Compos. Sci. Technol.
,
41
, pp.
333
378
.
4.
Hunston, D. L., Moulton, R. J., Johnston, N. J., and Bascom, W., 1987, “Matrix Resin Effects in Composite Delamination: Mode I Fracture Aspects,” N. J. Johnston, ed., Toughened Composites, ASTM STP 937, pp. 74–94.
5.
Schwartz, H. S., and Hartness, T., 1987, “Effect of Fiber Coatings on Interlaminar Fracture Toughness of Composites,” N. J. Johnston, ed., Toughened Composites, ASTM STP 937, pp. 150–178.
6.
Browning, C. E., and Schwartz, H. S., 1987, “Delamination Resistant Composite Concepts,” J. M. Whitney, ed., Composite Materials: Testing and Design (Tenth Volume), ASTM STP 893, pp. 256–265.
7.
Ishai
,
O.
,
Rosenthal
,
H.
,
Sela
,
N.
, and
Drukker
,
E.
,
1988
, “
Effect of Selective Adhesive Interleaving on Interlaminar Fracture Toughness of Graphite/epoxy Composite Laminates
,”
Composites
,
19
, No.
1
, pp.
49
54
.
8.
Finegan
,
I. C.
, and
Gibson
,
R. F.
,
1998
, “
Improvement of Damping at the Micromechanical Level in Polymer Composite Materials under Transverse Normal Loading by the use of Special Fiber Coatings
,”
ASME J. Vibr. Acoust.
,
120
, pp.
623
627
.
9.
Gibson, R. F., and Mantena, P. R., 1990, “Dynamic Mechanical Properties of Hybrid Polyethylene/Graphite Composites,” Proc. 22nd International SAMPE Technical Conference, pp. 370–382.
10.
Liao
,
F. S.
,
Su
,
A. C.
, and
Hsu
,
T. C.
,
1994
, “
Vibration Damping of Interleaved Carbon Fiber-epoxy Composite Beams
,”
J. Compos. Mater.
,
28
, No.
18
, pp.
1840
1854
.
11.
Gent
,
A. N.
, and
Kinloch
,
A. J.
,
1971
, “
Adhesion of Viscoelastic Materials to Rigid Substrates. III. Energy Criterion for Failure
,”
J. Polym. Sci., Part A-2
,
9
, pp.
659
668
.
12.
Andrews
,
E. H.
,
1974
, “
A Generalized Theory of Fracture Mechanics
,”
J. Mater. Sci.
,
9
, pp.
887
894
.
13.
Irwin, G. R., 1958, “Fracture,” Handbuch der Physik, Vol. 6, pp. 551–590, S. Flugge, ed., Springer, Berlin, Germany.
14.
Russell, A. J., and Street, K. N., 1985, “Moisture and Temperature Effect on the Mixed Mode Delamination Fracture of Unidirectional Graphite/epoxy,” W. S. Johnson, ed., Delamination and Debonding of Materials, ASTM STP 876, pp. 349–370.
15.
Suarez
,
S. A.
, and
Gibson
,
R. F.
,
1987
, “
Improved Impulse-Frequency Response Techniques for Measurement of Dynamic Mechanical Properties of Composite Materials
,”
J. Test. Eval.
,
5
, No.
2
, pp.
114
121
.
16.
Zhao, H., and Gibson, R. F., 1995, “Stress Relaxation and Clamping Stress in Vibration Damping Measurements of Cantilever Beams of E-glass/epoxy composites,” Proc. Society for Experimental Mechanics Spring Conference on Experimental Mechanics, Grand Rapids, MI, pp. 735–738.
17.
Ungar
,
E. E.
, and
Kerwin
, Jr.,
E. M.
,
1962
, “
Loss Factors of viscoelastic Systems in Terms of Strain Energy
,”
J. Acoust. Soc. Am.
,
34
, No.
2
, pp.
954
958
.
18.
Hwang
,
S. J.
, and
Gibson
,
R. F.
,
1992
, “
The Use of Strain Energy-Based Finite Element Techniques in the Analysis of Various Aspects of Damping in Composite Materials and Structures
,”
J. Compos. Mater.
,
26
, No.
17
, pp.
2585
2605
.
19.
Chai
,
H.
,
1992
, “
Micromechanics of Shear Deformation in Cracked Bonded Joints
,”
Int. J. Fract.
,
58
, pp.
223
239
.
20.
Goland
,
M.
, and
Reissner
,
E.
,
1944
, “
The Stress in Cemented Joints
,”
ASME J. Appl. Mech.
,
7
, pp.
A-17–A-27
A-17–A-27
.
21.
Zhao, H., 1997, “The Use of Nondestructive Damping Measurements to Characterize Interlaminar Fracture Toughness in Polymer Composite Materials,” Ph.D. dissertation, Wayne State University, Detroit, MI.
22.
Hunston, D. L., 1994, “Characterizing the Fracture Behavior of Structural Adhesive Bond,” Proc. 10th Annual ASM/ESD Advanced Composites Conference, Dearborn, MI, pp. 463–472.
You do not currently have access to this content.