This paper proposes a simple two-surface model for cyclic incremental plasticity based on combined Mroz and Ziegler kinematic hardening rules under nonproportional loading. The model has only seven material constants and a nonproportional factor which describes the degree of additional hardening. Cyclic loading experiments with fourteen strain paths were conducted using Type 304 stainless steel. The simulation has shown that the model was precise enough to calculate the stable cyclic stress-strain relationship under nonproportional loadings. [S0094-4289(00)00101-8]
Issue Section:
Technical Papers
1.
McDowell, D. L., 1983, “On the Path Dependence of Transient Hardening and Softening to Stable States Under Complex Biaxial Cyclic Loading,” Proc. Int. Conf. on Constitutive Laws for Engng. Mater., Tucson, AZ, Desai and Gallagher, eds., pp. 125–135.
2.
Doong
, S. H.
, Socie
, D. F.
, and Robertson
, I. M.
, 1990
, “Dislocation Substructures and Nonproportional Hardening
,” ASME J. Eng. Mater. Technol.
, 112
, pp. 456
–465
.3.
Itoh
, T.
, Sakane
, M.
, Ohnami
, M.
, and Socie
, D. F.
, 1995
, “Nonproportional Low Cycle Fatigue Criterion for Type 304 Stainless Steel
,” ASME J. Eng. Mater. Technol.
, 117
, pp. 285
–292
.4.
Socie
, D. F.
, 1987
, “Multiaxial Fatigue Damage Models
,” ASME J. Eng. Mater. Technol.
, 109
, pp. 293
–298
.5.
Krempl
, E.
, and Lu
, H.
, 1983
, “Comparison of the Stress Response of an Aluminum Alloy Tube to Proportional and Alternate Axial and Shear Strain Paths at Room Temperature
,” Mech. Mater.
, 2
, pp. 183
–192
.6.
Itoh
, T.
, Sakane
, M.
, Ohnami
, M.
, and Ameyama
, K.
, 1992
, “Effect of Stacking Fault Energy on Cyclic Constitutive Relation Under Nonproportional Loading
,” J. Soc. Mater. Sci. Jpn.
, 41
, No. 468
, pp. 1361
–1367
.7.
Itoh, T., Sakane, M., Ohnami, M., and Ameyama, K., 1992, “Additional Hardening due to Nonproportional Cyclic Loading—Contribution of Stacking Fault Energy—,” Proceedings of MECAMAT’92, International Seminar on Multiaxial Plasticity, Cachan, France, pp. 43–50.
8.
Itoh, T., Sakane, M., Ohnami, M., and Socie, D. F., 1997, “Nonproportional Low Cycle Fatigue of 6061 Aluminum Alloy Under 14 Strain Paths,” Proceedings of 5th International Conference on Biaxial/Multiaxial Fatigue and Fracture, Cracow, Poland, I. pp. 173–187.
9.
McDowell
, D. L.
, 1985
, “A Two Surface model for Transient Nonproportional Cyclic Plasticity: Part 1: Development of Appropriate Equations
,” ASME J. Appl. Mech.
, 52
, pp. 298
–302
.10.
McDowell
, D. L.
, 1985
, “A Two Surface Model for Transient Nonproportional Cyclic Plasticity: Part 2: Comparison of Theory with Experiments
,” ASME J. Appl. Mech.
, 52
, pp. 303
–308
.11.
Krempl
, E.
, and Lu
, H.
, 1984
, “The Hardening and Rate-Dependent Behavior of Fully Annealed AISI Type 304 Stainless steel Under In-Phase and Out-of-Phase Strain Cycling at Room Temperature
,” ASME J. Eng. Mater. Technol.
, 106
, pp. 376
–382
.12.
Benallal
, A.
, and Marquis
, D.
, 1987
, “Constitutive Equations for Nonproportional Cyclic. Elasto-iscoplasticity
,” ASME J. Eng. Mater. Technol.
, 109
, pp. 326
–336
.13.
McDowell
, D. L.
, 1987
, “An Evaluation of Recent Developments in Hardening and Flow Rules for Rate-Independent, Nonproportional Cyclic Plasticity
,” ASME J. Appl. Mech.
, 54
, pp. 323
–334
.14.
Chaboche
, J. L.
, and Nouailhas
, D.
, 1989
, “Constitutive Modeling of Ratchetting Effects, Part I: Experimental Facts and Properties of the Classical Models
,” ASME J. Eng. Mater. Technol.
, 111
, pp. 384
–392
.15.
Chaboche
, J. L.
, and Nouailhas
, D.
, 1989
, “Constitutive Modeling of Ratchetting Effects, Part II: Possibilities of Some Additional Kinematic Rules
,” ASME J. Eng. Mater. Technol.
, 111
, pp. 409
–416
.16.
Doong
, S. H.
, and Socie
, D. F.
, 1991
, “Constitutive Modeling of Metals Under Nonproportional Loading
,” ASME J. Eng. Mater. Technol.
, 113
, pp. 23
–30
.17.
Ohno
, N.
, and Wang
, J. D.
, 1991
, “Nonlinear Kinematic Hardening Rule: Proposition and Application to Ratchetting Problems
,” Trans. SMiRT 11
, 1
, Tokyo, pp. 481
–486
.18.
Krieg
, R. D.
, 1975
, “A Practical Two Surface Plasticity Theory
,” ASME J. Appl. Mech.
, 28
, pp. 641
–646
.19.
Dafalias
, Y. F.
, and Popov
, E. P.
, 1976
, “Plastic Internal Variables Formalism of Cyclic Plasticity
,” ASME J. Appl. Mech.
, 43
, pp. 645
–651
.20.
Lamba
, H. S.
, and Sidebottom
, O. M.
, 1978
, “Cyclic Plasticity for Nonproportional Paths: Part II. Comparison with Prediction of Three Incremental Plasticity Models
,” ASME J. Eng. Mater. Technol.
, 100
, pp. 104
–112
.21.
Tseng
, N. T.
, and Lee
, G. C.
, 1987
, “Simple Plasticity Model of Two-Surface Type
,” ASCE J. Eng. Mech.
, 109
, pp. 795
–810
.22.
Ellyin
, F.
, and Xia
, Z.
, 1989
, “A Rate-Independent Constitutive Model for Transient Nonproportional Loading
,” J. Mech. Phys. Solids
, 37
, pp. 71
–91
.23.
Chen
, X.
, and Abel
, A.
, 1996
, “A Two-Surface Model Describing Ratchetting Behaviors and Transient Hardening Under Nonproportional Loading
,” ACTA Mech. Sin. (English Series)
, 12
, pp. 368
–376
.24.
Kida
, S.
, Itoh
, T.
, Sakane
, M.
, Ohnami
, M.
, and Socie
, D. F.
, 1997
, “Dislocation Structure and Non-proportional Hardening of Type 304 Stainless Steel
,” Fatigue Fract. Eng. Mater. Struct.
, 20
, pp. 1375
–1386
.25.
Ziegler
, H.
, 1959
, “A Modification of Prager’s Hardening Rule
,” Q. Appl. Mech.
, 7
, pp. 55
–56
.26.
Mroz
, Z.
, 1969
, “An Attempt to Describe the Behavior of Metals Under Cyclic Loading a More General Workhardening Model
,” Acta Mech.
, 7
, pp. 199
–212
.27.
Lee
, Y. L.
, Chiang
, Y. J.
, and Wong
, H. H.
, 1995
, “A Constitutive Model for Estimating Multiaxial Notch Strains
,” ASME J. Eng. Mater. Technol.
, 117
, pp. 33
–40
. Copyright © 2000
by ASME
You do not currently have access to this content.