This paper proposes a simple two-surface model for cyclic incremental plasticity based on combined Mroz and Ziegler kinematic hardening rules under nonproportional loading. The model has only seven material constants and a nonproportional factor which describes the degree of additional hardening. Cyclic loading experiments with fourteen strain paths were conducted using Type 304 stainless steel. The simulation has shown that the model was precise enough to calculate the stable cyclic stress-strain relationship under nonproportional loadings. [S0094-4289(00)00101-8]

1.
McDowell, D. L., 1983, “On the Path Dependence of Transient Hardening and Softening to Stable States Under Complex Biaxial Cyclic Loading,” Proc. Int. Conf. on Constitutive Laws for Engng. Mater., Tucson, AZ, Desai and Gallagher, eds., pp. 125–135.
2.
Doong
,
S. H.
,
Socie
,
D. F.
, and
Robertson
,
I. M.
,
1990
, “
Dislocation Substructures and Nonproportional Hardening
,”
ASME J. Eng. Mater. Technol.
,
112
, pp.
456
465
.
3.
Itoh
,
T.
,
Sakane
,
M.
,
Ohnami
,
M.
, and
Socie
,
D. F.
,
1995
, “
Nonproportional Low Cycle Fatigue Criterion for Type 304 Stainless Steel
,”
ASME J. Eng. Mater. Technol.
,
117
, pp.
285
292
.
4.
Socie
,
D. F.
,
1987
, “
Multiaxial Fatigue Damage Models
,”
ASME J. Eng. Mater. Technol.
,
109
, pp.
293
298
.
5.
Krempl
,
E.
, and
Lu
,
H.
,
1983
, “
Comparison of the Stress Response of an Aluminum Alloy Tube to Proportional and Alternate Axial and Shear Strain Paths at Room Temperature
,”
Mech. Mater.
,
2
, pp.
183
192
.
6.
Itoh
,
T.
,
Sakane
,
M.
,
Ohnami
,
M.
, and
Ameyama
,
K.
,
1992
, “
Effect of Stacking Fault Energy on Cyclic Constitutive Relation Under Nonproportional Loading
,”
J. Soc. Mater. Sci. Jpn.
,
41
, No.
468
, pp.
1361
1367
.
7.
Itoh, T., Sakane, M., Ohnami, M., and Ameyama, K., 1992, “Additional Hardening due to Nonproportional Cyclic Loading—Contribution of Stacking Fault Energy—,” Proceedings of MECAMAT’92, International Seminar on Multiaxial Plasticity, Cachan, France, pp. 43–50.
8.
Itoh, T., Sakane, M., Ohnami, M., and Socie, D. F., 1997, “Nonproportional Low Cycle Fatigue of 6061 Aluminum Alloy Under 14 Strain Paths,” Proceedings of 5th International Conference on Biaxial/Multiaxial Fatigue and Fracture, Cracow, Poland, I. pp. 173–187.
9.
McDowell
,
D. L.
,
1985
, “
A Two Surface model for Transient Nonproportional Cyclic Plasticity: Part 1: Development of Appropriate Equations
,”
ASME J. Appl. Mech.
,
52
, pp.
298
302
.
10.
McDowell
,
D. L.
,
1985
, “
A Two Surface Model for Transient Nonproportional Cyclic Plasticity: Part 2: Comparison of Theory with Experiments
,”
ASME J. Appl. Mech.
,
52
, pp.
303
308
.
11.
Krempl
,
E.
, and
Lu
,
H.
,
1984
, “
The Hardening and Rate-Dependent Behavior of Fully Annealed AISI Type 304 Stainless steel Under In-Phase and Out-of-Phase Strain Cycling at Room Temperature
,”
ASME J. Eng. Mater. Technol.
,
106
, pp.
376
382
.
12.
Benallal
,
A.
, and
Marquis
,
D.
,
1987
, “
Constitutive Equations for Nonproportional Cyclic. Elasto-iscoplasticity
,”
ASME J. Eng. Mater. Technol.
,
109
, pp.
326
336
.
13.
McDowell
,
D. L.
,
1987
, “
An Evaluation of Recent Developments in Hardening and Flow Rules for Rate-Independent, Nonproportional Cyclic Plasticity
,”
ASME J. Appl. Mech.
,
54
, pp.
323
334
.
14.
Chaboche
,
J. L.
, and
Nouailhas
,
D.
,
1989
, “
Constitutive Modeling of Ratchetting Effects, Part I: Experimental Facts and Properties of the Classical Models
,”
ASME J. Eng. Mater. Technol.
,
111
, pp.
384
392
.
15.
Chaboche
,
J. L.
, and
Nouailhas
,
D.
,
1989
, “
Constitutive Modeling of Ratchetting Effects, Part II: Possibilities of Some Additional Kinematic Rules
,”
ASME J. Eng. Mater. Technol.
,
111
, pp.
409
416
.
16.
Doong
,
S. H.
, and
Socie
,
D. F.
,
1991
, “
Constitutive Modeling of Metals Under Nonproportional Loading
,”
ASME J. Eng. Mater. Technol.
,
113
, pp.
23
30
.
17.
Ohno
,
N.
, and
Wang
,
J. D.
,
1991
, “
Nonlinear Kinematic Hardening Rule: Proposition and Application to Ratchetting Problems
,”
Trans. SMiRT 11
,
1
, Tokyo, pp.
481
486
.
18.
Krieg
,
R. D.
,
1975
, “
A Practical Two Surface Plasticity Theory
,”
ASME J. Appl. Mech.
,
28
, pp.
641
646
.
19.
Dafalias
,
Y. F.
, and
Popov
,
E. P.
,
1976
, “
Plastic Internal Variables Formalism of Cyclic Plasticity
,”
ASME J. Appl. Mech.
,
43
, pp.
645
651
.
20.
Lamba
,
H. S.
, and
Sidebottom
,
O. M.
,
1978
, “
Cyclic Plasticity for Nonproportional Paths: Part II. Comparison with Prediction of Three Incremental Plasticity Models
,”
ASME J. Eng. Mater. Technol.
,
100
, pp.
104
112
.
21.
Tseng
,
N. T.
, and
Lee
,
G. C.
,
1987
, “
Simple Plasticity Model of Two-Surface Type
,”
ASCE J. Eng. Mech.
,
109
, pp.
795
810
.
22.
Ellyin
,
F.
, and
Xia
,
Z.
,
1989
, “
A Rate-Independent Constitutive Model for Transient Nonproportional Loading
,”
J. Mech. Phys. Solids
,
37
, pp.
71
91
.
23.
Chen
,
X.
, and
Abel
,
A.
,
1996
, “
A Two-Surface Model Describing Ratchetting Behaviors and Transient Hardening Under Nonproportional Loading
,”
ACTA Mech. Sin. (English Series)
,
12
, pp.
368
376
.
24.
Kida
,
S.
,
Itoh
,
T.
,
Sakane
,
M.
,
Ohnami
,
M.
, and
Socie
,
D. F.
,
1997
, “
Dislocation Structure and Non-proportional Hardening of Type 304 Stainless Steel
,”
Fatigue Fract. Eng. Mater. Struct.
,
20
, pp.
1375
1386
.
25.
Ziegler
,
H.
,
1959
, “
A Modification of Prager’s Hardening Rule
,”
Q. Appl. Mech.
,
7
, pp.
55
56
.
26.
Mroz
,
Z.
,
1969
, “
An Attempt to Describe the Behavior of Metals Under Cyclic Loading a More General Workhardening Model
,”
Acta Mech.
,
7
, pp.
199
212
.
27.
Lee
,
Y. L.
,
Chiang
,
Y. J.
, and
Wong
,
H. H.
,
1995
, “
A Constitutive Model for Estimating Multiaxial Notch Strains
,”
ASME J. Eng. Mater. Technol.
,
117
, pp.
33
40
.
You do not currently have access to this content.