A thermodynamical theory of elastoplasticity including kinematic hardening and dislocation density tensor is developed. The theory is self-consistent and is based on two fundamental principles of thermodynamics, i.e., the principle of increase of entropy and maximal entropy production rate. The thermodynamically consistent governing equations of plastic spin and back stress are rigorously derived. An expression for the plastic spin tensor is obtained from the constitutive equation of dislocation drift rate tensor and an expression for the back stress tensor is given as a balance equation expressing an equilibrium between internal stress and microstress conjugate to the dislocation density tensor. Moreover, it is shown that, in order to obtain a thermodynamically consistent theory for kinematic hardening, the free energy density should have the dislocation density tensor as one of its arguments.

1.
Bilby
B. A.
,
Bullough
R.
, and
Smith
E.
,
1955
,
Proc. R. Soc. (London.)
A231
,
263
263
.
2.
Chakrabarti
S. K.
and
Wainwright
W. L.
,
1969
,
Int. J. Engng. Sci.
,
7
,
601
601
.
3.
Dafalias
Y. F.
,
1985
,
ASME J. Appl. Mech.
,
52
,
865
865
.
4.
Dienes
J. K.
,
1979
,
Acta Mech.
,
32
,
217
217
.
5.
Dillon
O. W.
and
Kratochvil
J.
,
1970
,
Int. J. Solids Structures
,
6
,
1513
1513
.
6.
Fleck
N. A.
,
Muller
G. M.
,
Ashby
M. F.
and
Hutchinson
J. W.
,
1994
,
Acta Metall. Mater.
,
42–2
,
475
475
.
7.
Forest
S.
,
Cailletaud
G.
and
Sievert
R.
,
1997
,
Arch. Mech.
,
49
,
4
,
705
705
.
8.
Green, A. E. and Zerna, W., 1968, Theoretical Elasticity 2nd ed., 72 Oxford Univ. Press.
9.
Kestin, J., 1966, IUTAM-symp., 177.
10.
Kondo, K., 1952, “On the geometrical and physical foundations of the theory of yielding,” Proc. 2 Japan Congr. Appl. Mech., 41.
11.
Kro¨ner
E.
,
1960
,
Arch. Rat. Mech. Anal.
,
4
,
273
273
.
12.
Kuroda
M.
,
1995
,
Int. J. Plasticity
,
11
5
,
547
547
.
13.
Le
K. C.
and
Stumpf
H.
,
1996
,
Int. J. Engng. Sci.
,
34
,
339
339
.
14.
Nagtegaal, J. C. and Jong, J. E., 1982, Proc. Workshop on Plasticity as Finite Strain, 65 Stanford Univ.
15.
Nye
J. F.
,
1953
,
Acta Metall.
,
1
,
153
153
.
16.
Peirce, R., Asaro, R. J. and Needleman, A., 1983, Acta Metall., 31, 1951.
17.
Sedov, L. I. and Berdichevsky, V. L., 1967, “A Dynamic Theory of Continual Dislocations.” Mechanics of Generalized Continua (Edited by Kro¨ner, E.), 215, Springer, Berlin.
18.
Shizawa
K.
,
1997
,
JSME Int. J. Series A
,
40–3
,
336
336
.
19.
Sowerby
R.
and
Chu
E.
,
1984
,
Int. J. Solids and Structures
,
20
,
1037
1037
.
20.
Szabo
L.
and
Balla
M.
,
1989
,
Int. J. Solids and Structures
,
25–3
,
279
279
.
21.
Teodosiu, C., 1970, Fundamental Aspects of Dislocation Theory, Simmons, deWitt and Bullough (eds.) Nat Bureau of Standards, Spec. Publ. 317, 2, 837, Washington.
22.
Yang
W.
,
Cheng
L.
, and
Hwang
K.
,
1992
,
Int. J. Plasticity
,
8
,
643
643
.
23.
Zbib
H. M.
and
Aifantis
E. C.
,
1988
,
Acta Mech.
,
75
,
15
15
.
24.
Zbib
H. M.
,
1993
,
Acta Mech.
,
96
,
119
119
.
25.
Ziegler
H.
,
1959
,
Quart. Appl. Math.
,
17
,
55
55
.
26.
Ziegler, H., 1983, An Introduction to Thermomechanics, 268 North-Holland.
This content is only available via PDF.
You do not currently have access to this content.