The anisotropic ductile fracture of rolled plates containing elongated inclusions is promoted by both the dilational growth of voids and the coalescence process. In the present article, the emphasis is laid on the latter process. The effects of void shape and mainly of inter-particle spacings are investigated. Two types of coalescence models are compared: a localization-based model and plastic limit-load models. The capabilities of both approaches to incorporate shape change and spacing effects are discussed. These models are used to predict the fracture properties of two low alloy steels containing mainly manganese sulfide inclusions. Both materials are characterized in different loading directions. Microstructural data inferred from quantitative metallography are used to derive theoretical values of critical void volume fractions at incipient coalescence. These values are used in FE-calculations of axisymmetrically notched specimens with different notch radii and loading directions.

1.
Batisse
 
R.
,
Bethmont
 
M.
,
Devesa
 
G.
, and
Rousselier
 
G.
,
1988
, “
Ductile fracture of A508 Cl3 steel in relation with inclusion content: the benefit of the local approach of fracture and continuum damage mechanics
,”
Nuc. Eng. Design
,
105
:
113
120
.
2.
Benzerga, A. A., Besson, J., and Pineau, A., 1997, “Mode`le couple´ comportement-endommagement ductile de toˆles anisotropes,” Peseux, B., Aubry, D., Pelle, J. P., and Touratier, M., editors, Actes du Troisle`me Colloque National en Calcul des Structures, pages 673–678. Presses Acade´miques de l’Ouest.
3.
Benzerga, A. A., Besson, J., Batisse, R., and Pineau, A., 1998, “Anisotropic ductile rupture,” Brown, M. W., de los Rios, E. R., and Miller, K. J., editors, 12th European Conference on Fracture, pages 715–720. ESIS, European Group on Fracture Publication.
4.
Beremin
 
F. M.
,
1981
, “
Cavity formation from inclusions in ductile fracture
,”
Met. Trans.
,
12A
:
723
731
.
5.
Besson
 
J.
, and
Foerch
 
R.
,
1997
, “
Large scale object oriented finite element code design
,”
Computer Methods in Applied Mechanics and Engineering
,
142
:
165
187
.
6.
Brocks
 
W.
,
Sun
 
D. Z.
, and
Ho¨nig
 
A.
,
1995
, “
Verification of the transferability of micromechanical parameters by cell model calculations with visco-plastic materials
,”
Int. J. Plasticity
,
11
(
8
):
971
989
.
7.
Budiansky, B., Hutchinson, J. W., and Slutsky, S., 1982, “Void growth and collapse in viscous solids,” Hopkins, H. G. and Sowell, M. J., editors. Mechanics of Solids, The Rodney Hill 60th Anniversary Volume, pages 13–45. Pergamon press.
8.
Doege
 
E.
,
El-Dsoki
 
T.
, and
Seibert
 
D.
,
1995
, “
Prediction of necking and wrinkling in sheet-metal forming
,”
J. Mat. Proc. Tech.
,
50
:
197
206
.
9.
Edelson
 
B. I.
and
Baldwin
 
W. M. J.
,
1962
, “
The effect of second phases on the mechanical properties of alloys
,”
Trans. ASM
,
55
:
238
238
.
10.
Franklin
 
A. G.
,
1969
, “
Comparison between a quantitative microscope and chemical methods for assessment of non-metallic inclusions
,”
J. of The Iron and Steel Institute
,
12
:
181
186
.
11.
Garrison
 
W. M.
, and
Moody
 
N. R.
,
1987
a, “
Ductile Fracture
,”
J. Phys. Chem. Solids
,
48
(
11
):
1035
1074
.
12.
Garrison
 
W. M.
, and
Moody
 
N. R.
,
1987
b, “
The influence of inclusion spacing and microstructure on the fracture toughness of the secondary hardening steel AF1410
,”
Metallurgical Transactions
,
18A
;
1257
1263
.
13.
Garrison, W. M., Wojcieszynski, A. L., and Iorio, L. E., 1997, “Effects of inclusion distributions on the fracture toughness of structural steels,” R. K. Mahidhara, A. B. Geltmacher, P. M. and Sadananda, K., editors, Recent Advances in Fracture, pages 125–136. TMS.
14.
Gologanu, M., 1997, “Etude de quelques proble`mes de rupture ductile des me´taux,” PhD thesis, Universite´ Paris 6.
15.
Gologanu
 
M.
,
Leblond
 
J.-B.
, and
Devaux
 
J.
,
1994
, “
Approximate models for ductile metals containing non-spherical voids—case of axisymmetric oblate ellipsoidal cavities
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
,
116
:
290
297
.
16.
Gologanu, M., Leblond, J.-B., Perrin, G., and Devaux, J., 1997, Continuum Micromechanics, Recent extensions of Gurson’s model for porous ductile metals. pp. 61–130, Suquet. P, ed. Springer-Verlag.
17.
Gurson
 
A. L.
,
1977
, “
Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOY
,
99
:
2
15
.
18.
Koplik
 
J.
, and
Needleman
 
A.
,
1988
, “
Void growth and coalescence in porous plastic solids
,”
Int. J. Solids Structures
,
24
:
835
853
.
19.
Lautridou
 
J. C.
, and
Pineau
 
A.
,
1981
, “
Crack initiation and stable crack growth resistance in a508 steels in relation to inclusion distribution
,”
Engineering Fracture Mechanics
,
15 (1–2)
:
55
71
.
20.
Leblond, J.-B. and Perrin, G., 1991, “Analytical study of the coalescence of cavities in ductile fracture of metals,” Plasticity 3rd Symposium on Anisotropy and Localization of Plastic Deformation, pages 233–236.
21.
Marini
 
B.
,
Mudry
 
F.
, and
Pineau
 
A.
,
1985
, “
Experimental study of cavity growth in ductile rupture
,”
Eng. Frac. Mechs.
,
22
:
989
996
.
22.
Mc Clintock
 
F. A.
,
1968
, “
A criterion for ductile fracture by the growth of holes
,”
ASME JOURNAL OF APPLIED MECHANICS
,
35
:
363
371
.
23.
Mudry, F., 1982, “Etude de la rupture ductile et de la rupture par clivage d’aciers faiblement allie´s,” PhD thesis, Doctorat d’e´tat, Universite´ de Technologie de Compie`gne.
24.
Ottosen
 
N. S.
, and
Runesson
 
K.
,
1991
, “
Properties of discontinuous bifurcation solutions in elasto-plasticity
,”
Int. J. Solids Structures
,
27
:
401
421
.
25.
Pardoen
 
T.
,
Doghri
 
I.
, and
Delannay
 
F.
,
1998
, “
Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars
,”
Acta Mater.
,
46
(
2
):
541
552
.
26.
Perrin, G., 1992, “Contribution a` l’e´tude the´orique at nume´rique de la rupture ductile des me´taux,” PhD thesis, Ecole Polytechnique.
27.
Pineau, A., 1981, “Review of fracture micromechanisms and a local approach to predicting crack resistance in low strength steels,” Francois, D., editor. Advances in Fracture Research, pages 553–577. Pergamon press.
28.
Ponte Castaneda
 
P.
, and
Zaidman
 
M.
,
1994
, “
Constitutive models for porous materials with evolving microstructure
,”
J. Mechs. Phys. Solids
,
42
:
1459
1495
.
29.
Rice, J. R. and Johnson, M. A., 1970, Inelastic behavior of solids, The role of large crack tip geometry changes in plane strain fracture, pages 641–672. McGraw-Hill.
30.
Rice
 
J. R.
, and
Tracey
 
D. M.
,
1969
, “
On the enlargement of voids in triaxial stress fields
,”
J. Mech. Phys. Sol.
,
17
:
201
217
.
31.
Riks
 
E.
,
1979
, “
An incremental approach to the solution of snapping and buckling problems
,”
Int. J. Solids Structures
,
15
:
529
551
.
32.
Rousselier
 
G.
,
1987
, “
Ductile fracture models and their potential in local approach of fracture
,”
Nuc. Eng. Design
,
105
:
97
111
.
33.
Rudnicki
 
J. W.
and
Rice
 
J. R.
,
1975
, “
Conditions for the localization of deformation in pressure-sensitive dilatant materials
,”
J. Mechs. Phys. Solids
,
23
:
371
394
.
34.
Sovik
 
O.
and
Thaulow
 
C.
,
1997
, “
Growth of spheroidal voids in elastic-plastic solids
,”
Fatigue Fract. Engng. Mater. Struct.
,
20
:
1731
1744
.
35.
Suquet
 
P.
,
1993
, “
On bounds for the overall potential of power law materials containing voids with arbitrary shape
,”
Mechanical Research Community
,
19
:
51
58
.
36.
Thomason
 
P. F.
,
1968
, “
A theory for ductile fracture by Internal necking of cavities
,”
J. Ins. Metals
,
96
:
360
360
.
37.
Thomason
 
P. F.
,
1985
a, “
A three-dimensional model for ductile fracture by the growth and coalescence of microvoids
,”
Acta Metallurgica
,
33
(
6
):
1087
1095
.
38.
Thomason
 
P. F.
,
1985
b, “
Three-dimensional models for the plastic limit-loads at incipient failure of the Intervoid matrix in ductile porous solids
,”
Acta Metallurgica
,
33
(
6
):
1079
1085
.
39.
Tvergaard
 
V.
,
1981
, “
Influence of voids on shear band instabilities under plane strain conditions
,”
Int. J. Frac
,
17
:
389
407
.
40.
Tvergaard
 
V.
, and
Needleman
 
A.
,
1984
, “
Analysis of the cup-cone fracture in a round tensile bar
,”
Acta Metall.
,
32
:
157
169
.
41.
Yamamoto
 
H.
,
1978
, “
Conditions for shear localization in the ductile fracture of void-containing materials
,”
Int. J. Frac
,
14
:
347
365
.
42.
Zhang
 
Z. L.
, and
Niemi
 
E.
,
1994
, “
Analyzing ductile fracture using dual dilational constitutive equations
,”
Fat. Frac. Eng. Mater. Structures
,
17
:
695
707
.
This content is only available via PDF.
You do not currently have access to this content.