Polycrystal plasticity models are commonly developed with a narrow focus on the grain as the fundamental unit of crystallographic orientation and anisotropic behavior. However, deformation and strengthening mechanisms occur simultaneously at multiple length scales and may lead to bulk deformation behavior of metals that is substantially different from that predicted by simple forms of polycrystal plasticity. The development of dislocation substructure occurs at subgrain scales while, at the same time, geometrically necessary dislocation boundaries (GNBs) are generated that extend over several grain diameters. A framework is presented here for the efficient treatment of multiple, simultaneously evolving strengthening mechanisms. The theory focuses on a macroscale hardening surface representation of the strengthening due to GNB formation. Crystallographic shear flow resistance is determined via a mapping procedure of the macroscale hardening surface to the length scale of grains. Predicted stress-strain curves based on the hardening surface formulation are compared to experimental data and polycrystal plasticity predictions for OFHC Cu. It is demonstrated that the hardening surface model of GNB strengthening mechanisms can provide improved predictive capability of nonproportional loading behavior of Cu compared to conventional slip system hardening laws commonly used in polycrystal plasticity applications.

1.
Anand
 
L.
, and
Kothari
 
M.
,
1996
, “
A Computational Procedure for Rate-Independent Crystal Plasticity
,”
J. Mech. Phys. Solids
, Vol.
44
, No.
4
, pp.
525
558
.
2.
Armstrong, P. J., and Frederick, C.O., 1966, “A Mathematical Representation of the Multiaxial Bauschinger Effect,” G.E.G.B. Report RD/B/N, p. 731.
3.
Asaro
 
R. J.
, and
Rice
 
R.
,
1977
, “
Strain Localization in Ductile Single Crystals
,”
J. Mech. Phys. Solids
, Vol.
25
, p.
309
309
.
4.
Asaro, R. J., 1983, “Micromechanics of Crystals and Polycrystals,” Advances in Applied Mechanics, Vol. 23, Academic Press, San Diego.
5.
Asaro
 
R. J.
, and
Needleman
 
A.
,
1985
, “
Texture Development and Strain Hardening in Rate Dependent Polycrystals
,”
Acta Metall.
, Vol.
33
, No.
6
, pp.
923
953
.
6.
Bassani
 
J. L.
, and
Wu
 
T. Y.
,
1991
, “
Latent Hardening in Single Crystals II, Analytical Characterization and Predictions
,”
Proc. R. Soc., London
, Vol.
A435
, p.
21
21
.
7.
Bay
 
B.
,
Hansen
 
N.
,
Hughes
 
D. A.
, and
Kuhlmann-Wilsdorf
 
D.
,
1992
, “
Evolution of FCC Deformation Structures in Polyslip
,”
Acta Met. Mater.
, Vol.
40
, No.
2
, pp.
205
219
.
8.
Bronkhorst
 
C. A.
,
Kalidindi
 
S. R.
, and
Anand
 
L.
,
1992
, “
Polycrystalline Plasticity and the Evolution of Crystallographic Texture in FCC Metals
,”
Phil. Trans. R. Soc.
, London, Series A, Vol.
341
, pp.
443
477
.
9.
Butler
 
G. C.
,
Graham
 
S.
,
McDowell
 
D. L.
,
Stock
 
S. R.
, and
Ferney
 
V. C.
,
1998
, “
Application of the Taylor Polycrystal Plasticity Model to Complex Deformation Experiments
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
120
, No.
3
, pp.
197
205
.
10.
Butler
 
G. C.
, and
McDowell
 
D. L.
,
1998
, “
Polycrystal Constraint and Grain Subdivision
,”
Int. J. Plasticity
, Vol.
14
, No.
8
, pp.
703
717
.
11.
Chang
 
Y. W.
, and
Asaro
 
R. J.
,
1981
, “
An Experimental Study of Shear Localization in Aluminum-Copper Single Crystals
,”
Acta Metall.
, Vol.
29
, pp.
241
257
.
12.
Cuitin˜o
 
A. M.
, and
Ortiz
 
M.
,
1992
, “
Computational Modeling of Single Crystals
,”
Modelling Simul. Mater. Sci. Eng.
, Vol.
1
, pp.
225
263
.
13.
Dawson, P. R., Beaudoin, A. J., and Mathur, K. K., 1994, “Finite Element Modeling of Polycrystalline Solids,” Numerical Predictions of Deformation Processes and the Behavior of Real Materials, Proc. 15th Riso Symposium On Materials Science, Anderson, S. I., Bilde-Sorensen, J. B., Lorentzen, T., Pedersen, O. B., and Sorenson, N. J., eds., Riso National Lab, Roskilde, Denmark, pp. 33–44.
14.
Graham, S., 1995, “The Stress State Dependence of Finite Inelastic Deformation Behavior of FCC Polycrystalline Materials,” Master’s thesis, Georgia Institute of Technology.
15.
Hansen
 
N.
, and
Juul Jensen
 
D. J.
,
1992
, “
Flow Stress Anisotropy Caused by Geometrically Necessary Boundaries
,”
Acta Met.
, Vol.
40
, No.
12
, pp.
3265
3275
.
16.
Havner, K. S., 1992, Finite Plastic Deformation of Crystalline Solids, Cambridge University Press, New York, NY.
17.
Hill
 
R.
,
1965
, “
A Self-Consistent Mechanics of Composite Materials
,”
J. Mech. Phys. Solids
, Vol.
13
, pp.
213
213
.
18.
Hughes
 
D. A.
, and
Hansen
 
N.
,
1991
, “
Microstructural Evolution in Nickel During Rolling and Torsion
,”
Mater. Sci. Tech.
, Vol.
7
, No.
6
, pp.
544
553
.
19.
Hughes, D. A., 1996, “The Development of High Angle Deformation Boundaries and Local Orientations in Aluminum,” Aluminum Alloys for Packaging II, J. G. Morris, S. K. Das and H. S. Goodrich, eds., The Minerals, Metals and Materials Society, pp. 129–144.
20.
Hughes
 
D. A.
,
Liu
 
Q.
,
Chrzan
 
D. C.
, and
Hansen
 
N.
,
1997
, “
Scaling of Microstructural Parameters and Misorientations of Deformation Induced Boundaries
,”
Acta. Mater.
, Vol.
45
, No.
1
, pp.
105
112
.
21.
Hutchinson
 
J. W.
,
1976
, “
Bounds and Self-Consistent Estimates for Creep of Polycrystalline Materials
,”
Proc. R. Soc., London
, Vol.
A348
, pp.
101
127
.
22.
Jonas, J. J., Canova, G. R., Shrivistava, S. C., and Christodoulou, N., 1981, “Sources of the Discrepancy Between the Flow Curves Determined in Torsion and in Axisymmetric Tension and Compression Testing,” Proceedings of The Workshop on Plasticity of Metals at Finite Strain: Theory, Experiment and Computation, Division of Applied Mechanics, Stanford University, Stanford, CA, pp. 206–222.
23.
Kalidindi
 
S. R.
,
Bronkhorst
 
C. A.
, and
Anand
 
L.
,
1992
, “
Crystallographic Texture Evolution in Bulk Deformation Processing of FCC Metals
,”
J. Mech. Phys. Solids
, Vol.
40
, No.
3
, pp.
537
569
.
24.
Kocks
 
U. F.
,
Stout
 
M. G.
, and
Rollett
 
A. D.
,
1988
, “
The Influence of Texture on Strain Hardening
,”
Strength of Metals and Alloys
, Vol.
1
, pp.
25
34
.
25.
Kocks, U. F., Kallend, J. S., Wank, H. R., Roller, A. D., and Wright, S. I., 1994, popLA, Preferred Orientation Package-Los Alamos, LANL LA-CC-89-18.
26.
Kroner, E., 1958, “Kontinuumstheorie der Versetzungen und Eigenspannungen,” Springer-Verlag, Berlin.
27.
Miller
 
M.
, and
Dawson
 
P.
,
1997
, “
Influence of Slip System Hardening Assumptions on Modeling Stress Dependence of Work Hardening
,”
J. Mech. Phys. Solids
, Vol.
45
, No.
11/12
, pp.
1781
1804
.
28.
Molinari
 
A.
,
Canova
 
G.
, and
Ahzi
 
S.
,
1987
, “
A Self-Consistent Approach of the Large Deformation Polycrystal Plasticity
,”
Acta Met.
, Vol.
35
, p.
2983
2983
.
29.
Nemat-Nasser, S., Mehrabadi, M. M., and Iwakuma, T., 1981, “On Certain Macroscopic and Microscopic Aspects of Plastic Flow of Ductile Materials,” Three-Dimensional Constitutive Relations and Ductile Fracture, S. Nemat-Nasser, ed., North-Holland Publ., pp. 147–172.
30.
Nemat-Nasser
 
S.
, and
Obata
 
M.
,
1986
, “
Rate Dependent, Finite Elasto-Plastic Deformation of Polycrystals
,”
Proc. R. Soc., London
, Vol.
A407
, p.
45
45
.
31.
Peirce
 
D.
,
Asaro
 
R. J.
, and
Needleman
 
A.
,
1983
, “
An Analysis of Non-uniform and Localized Deformation in Ductile Single Crystals
,”
Acta Metall.
, Vol.
31
, p.
1951
1951
.
32.
Rashid
 
M. M.
, and
Nemat-Nasser
 
S.
,
1990
, “
A Constitutive Algorithm for Rate Dependent Crystal Plasticity
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
94
, pp.
201
228
.
33.
Rollet, A. D., Juul Jensen, D., and Stout, M. G., 1992, “Modelling the Effect of Microstructure on Yield Anisotropy,” Proc. 13th Ris0 Int. Symp. On Materials Science, S. I. Andersen et al., eds., Ris0 National Laboratory, Roskilde, Denmark, pp. 93–109.
34.
Schro¨der
 
J.
, and
Miehe
 
C.
,
1997
, “
Aspects of Computational Rate-Independent Crystal Plasticity
,”
Computational Materials Science
, Vol.
9
, pp.
168
176
.
35.
Stout, M. G., Kallend, J. S., Kocks, U. F., Przystupa, M. A., and Rollett, A. D., 1988, “Material Dependence of Deformation Texture Development in Various Deformation Modes,” Proc. 8th Int. Conf. On Textures of Materials (ICOTOM 8), J. S. Kallend and G. Gottstein, eds., the Metallurgical Society.
36.
Taylor
 
G. I.
, and
Elam
 
C. F.
,
1925
, “
The Plastic Extension and Fracture of Aluminum Crystals
,”
Proc. Royal Soc., London
, Vol.
A108
, p.
28
28
.
37.
Taylor
 
G. I.
,
1938
, “
Plastic Strain in Metals
,”
J. Inst. Metals
, Vol.
62
, p.
307
307
.
38.
Teodosiu, C., 1991, Anisotropy and Localization of Plastic Deformation, J. P. Boehler and A. S. Khan, eds., pp. 179–182.
This content is only available via PDF.
You do not currently have access to this content.