Plastic deformation in sheet metal consists of four distinct phases, namely, uniform deformation, diffuse necking, localized necking, and final rupture. The last three phases are commonly known as nonuniform deformation. A proper forming limit diagram (FLD) should include all three phases of the nonuniform deformation. This paper presents the development of a unified approach to the prediction of FLD to include all three phases of nonuniform deformation. The conventional method for predicting FLD is based on localized necking and adopts two fundamentally different approaches. Under biaxial loading, the Hill’s plasticity method is often chosen when α(=ε21) <0. On the other hand, the M-K method is typically used for the prediction of localized necking when α > 0 or when the biaxial stretching of sheet metal is significant. The M-K method, however, suffers from the arbitrary selection of the imperfection size, thus resulting in inconsistent predictions. The unified approach takes into account the effects of micro-cracks/voids on the FLD. All real-life materials contain varying sizes and degrees of micro-cracks/voids which can be characterized by the theory of damage mechanics. The theory is extended to include orthotropic damage, which is often observed in extensive plastic deformation during sheet metal forming. The orthotropic FLD model is based on an anisotropic damage model proposed recently by Chow and Wang (1993). Coupling the incremental theory of plasticity with damage, the new model can be used to predict not only the forming limit diagram but also the fracture limit diagram under proportional or nonproportional loading. In view of the two distinct physical phenomena governing the cases when α(=ε21) < or α > 0, a set of instability criteria is proposed to characterize all three phases of nonuniform deformation. The orthotropic damage model has been employed to predict the FLD of VDIF steel (Chow et al, 1996) and excellent agreement between the predicted and measured results has been achieved as shown in Fig. 1. The damage model is extended in this paper to examine its applicability and validity for another important engineering material, namely aluminum alloy 6111-T4.

1.
Arrieux, R., Bedrin, C., and Boiven, M., 1982, Proc. 12th IDORG Congress, Italy, p. 61.
2.
Azrin
M.
, and
Backofen
W. A.
,
1970
, “
The Deformation and Failure of a Biaxially Stretched Sheet
,”
Met. Trans.
, Vol.
1
, p.
2857
2857
.
3.
Bassani, J. L., Hutchison, J. W., and Neal, K. W., 1979, Metal Forming Plasticity Symposium, H. Lippman, ed. Springer-Verlag, Berlin, 1.
4.
Bammann
D. J.
,
1990
, “
Modeling Temperature and Strain Rate Dependent Large Deformation of Metals
,”
Applied Mechanics Review
, Vol.
43
, p.
312
312
.
5.
Beaudoin, A. J., Koya, T., Smith, P. E. and Wiese, J. W., 1995, “Experiences in the Use of an Evolutionary Damage Model With LS-DYNA3D, SAE 95-0915. p. 113.
6.
Chaboche
J. L.
,
1984
, “
Anisotropic Creep Damage in the Framework of Continuum Damage Mechanics
,”
Nuclear Engineering and Design
, Vol.
79
, p.
309
309
.
7.
Chaboche
J. L.
, and
Lesne
P. M.
,
1988
, “
A Non-Linear Continuous Fatigue Damage Model
,”
Fatigue Fract. Engng. Mater. Struct.
,
11
, p.
1
1
.
8.
Chow
C. L.
and
Lu
T. J.
,
1989
, “
On Evolution Laws of Anisotropic Damage
,”
Engineering Fracture Mechanics
, Vol.
34
, p.
53
53
.
9.
Chow
C. L.
, and
Chen
X. F.
,
1992
, “
An Anisotropic Model of Continuum Damage Mechanics Based on Endochronic Theory of Plasticity
,”
International Journal of Fracture
, Vol.
55
, p.
115
115
.
10.
Chow
C. L.
, and
Wang
J.
,
1987
a, “
An anisotropic theory of elasticity for continuum damage mechanics
,”
International Journal of Fracture
, Vol.
33
, p.
3
3
.
11.
Chow
C. L.
, and
Wang
J.
,
1987
b, “
An Anisotropic Theory of Continuum Damage Mechanics for Ductile Fracture
,”
Engineering Fracture Mechanics
, Vol.
27
, p.
547
547
.
12.
Chow
C. L.
, and
Wang
J.
,
1987
c, “
An Anisotropic Continuum Damage Theory and Its Application to Ductile Crack Initiation
,”
Damage Mechanics in Composites
, ASME AD,
12
,
1
1
.
13.
Chow
C. L.
, and
Wang
J.
,
1988
a, “
Ductile Fracture Characterization with an Anisotropic Continuum Damage Theory
,”
Engineering Fracture Mechanics
, Vol.
30
, p.
547
547
.
14.
Chow
C. L.
, and
Wang
J.
,
1988
b, “
A Finite Element Analysis of Continuum Damage Mechanics for Ductile Fracture
,”
International Journal of Fracture
, Vol.
38
, p.
83
83
.
15.
Chow
C. L.
, and
Wei
Y.
,
1991
a, “
A Damage Mechanics Model of Fatigue Crack Initiation in Notched Plates
,”
Theory. Appl. Fract. Mech.
,
16
, p.
123
123
.
16.
Chow
C. L.
and
Wei
Y.
,
1991
b, “
A Model of Continuum Damage Mechanics for Fatigue Failure
,”
Int. J. Fract.
,Vol.
50
, p.
301
301
.
17.
Chow, C. L., Yu, L. G. and Demeri, M. Y., 1996, “Prediction of Forming Limit Diagram with Damage Mechanics,” SAE Paper 960598.
18.
Chow, C. L., Yu, L. G. and Duggan, B. J., 1993, “An Orthotropic Model of Damage Mechanics for Metal Fatigue,” ASME Winter Annual Meeting, New Orleans, LA, Nov. 28–Dec. 3, AD-Vol. 36, p. 1.
19.
Cordebois, J. P., and Sidoroff, F., 1979, “Damage Induced Elastic Anisotropy,” Euromech Colloquium 115, Comportement M, Canique des Solides Anisotropes, Grenoble, pp. 761–774.
20.
Ghosh
A. K.
, and
Hecker
S. S.
,
1974
, “
Stretching Limits in Sheet Metals: In-Plane Versus Out-of-Plane Deformation
,”
Metal. Trans.
, Vol.
5
, p.
2161
2161
.
21.
Ghosh
A. K.
, and
Hecker
S. S.
,
1975
, “
Failure in Thin Sheets Stretched over Rigid Punches
,”
Metal. Trans.
6A
, p.
1065
1065
.
22.
Gronostajski, J., Dolny, A., and Sobis, T., 1982, Proc. 12th IDDRG Congress. Italy, p. 39.
23.
Gurson, A. L., 1975, “Plastic Flow and Fracture Behavior of Ductile Materials Incorporating Nucleation, Growth and Interaction,” Ph.D. thesis. Brown University (available from University Microfilms, Ann Arbor, MI).
24.
Gurson
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I-Yield Criteria and Flow Rules for Porous Ductile Materials
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
99
, p.
2
2
.
25.
Hecker, S. S., 1975a, “Simple Technique for Determining FLC,” Sheet Metal Ind., Nov., p. 671.
26.
Hecker
S. S.
,
1975
b,
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
97
, p.
66
66
.
27.
Hill, R., 1950, The Mathematical Theory of Plasticity, University Press, Oxford.
28.
Hill
R.
,
1952
, “
On Discontinuous Plastic States with Special Reference to Localized Necking in the Sheet
,”
J. Mech. Phys. Solids
, Vol.
1
, p.
19
19
.
29.
Hutchinson, J. W., Neale, K. W., and Needleman, A., 1978, “Sheet Necking-I: Validity of Plane Stress Assumptions of the Long-Wavelength Approximation,” Koistinen, D. P. and Wang, N. M. eds., GMR Symposium Mechanics of Metal Forming, Plenum Press, New York, p. III.
30.
Hutchinson, J. W., and Neale, K. W., 1978a, “Sheet necking-II: Time-independent behavior,” Koistinen, D. P. and Wang, N. M. eds., GMR Symposium Mechanics of Metal Forming, Plenum Press, New York, p. 127.
31.
Hutchinson, J. W., and Neale, K. W., 1978b, “Sheet necking-III: Strain-rate effects,” Koistinen, D. P. and Wang, N. M. eds., GMR Symposium Mechanics of Metal Forming, Plenum Press, New York, p. 269.
32.
Hutchinson
W. B.
, and
Arthey
R.
,
1976
,
Scr. Metal.
. Vol.
10
, p.
673
673
.
33.
Keeler, S. P., 1968, Machinery, Vol. 74.
34.
Kikuma
T.
, and
Nakazima
K.
,
1971
,
Iron Steel Inst.
Japan, Vol.
11
, p.
827
827
.
35.
Kobayashi, T., Ishigaki, H. and Abe, T., 1972, Proc. 7th IDDRG Congress, Amsterdam, p. 8, 1.
36.
Laukonis
J. V.
, and
Gosh
A. K.
,
1978
, “
Effects of Strain Path Changes on the Formability of Sheet Metals
,”
Metal. Trans.
9A
, p.
1849
1849
.
37.
Lee
H.
,
Peng
K.
,
Lu
Y. B.
, and
Yu
L. G.
,
1983
, “
An Orthogonal Anisotropic Ductile Damage Model Applicable to Deep-Drawing Forming Limits
,”
Journal of Huazhong University of Science and Technology
, Vol.
11
, p.
63
63
(in Chinese).
38.
Lee
H.
,
Wang
J.
, and
Peng
K.
,
1985
, “
Anisotropic Damage Criterion for Deformation Instability and Its Application to the Forming Limit of Sheet Metal
,”
Journal of Huazhong University of Science and Technology
, Vol.
13
, p.
1
1
(in Chinese).
39.
Lemaitre, J., 1983, “A Three-Dimensional Ductile Damage Model Applied to Deep-Drawing Forming Limits,” ICM4.
40.
Loyd
D. J.
, and
Sang
H.
,
1979
, “
The Influence of Strain Path on Subsequent Mechanical Properties-Orthogonal Tensile Paths
,”
Metal. Trans.
Vol.
10A
, p.
161
161
.
41.
Marciniak
Z.
, and
Kuczynski
K.
,
1967
, “
Limit strains in the processes of stretch-forming sheet metal
,”
Int. J. Mech. Sci.
, Vol.
9
, p.
609
609
.
42.
Marciniak
Z.
,
Kuczynski
K.
,and
Pokora
T.
,
1973
, “
Influence of the plastic properties of a material on the forming limit diagram for sheet metal in tension
,”
Int. J. Mech. Sci.
, Vol.
15
, p.
789
789
.
43.
Needleman, A., and Rice, J. R., 1978, Mechanics of Sheet Metal Forming, D. P. Koistinen and N. M. Wang, eds., Plenum Press, New York, pp. 257–267.
44.
Needleman
A.
, and
Triantafyllidis
N.
,
1978
, “
Void Growth and Local Necking in Biaxially Stretched Sheets
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
100
, p.
164
164
.
45.
Painter
M. J.
, and
Pearce
R.
,
1974
, “
Instability and Fracture in Sheet Metal
,”
J. Phys. D: Appl. Phys.
, Vol.
7
, p.
992
992
.
46.
Ranta-Eskola, A., 1980, Proc. 11th IDDRG Congress, Metz, p. 453.
47.
Schmitt
J. H.
, and
Jalinier
J. M.
,
1982
, “
Damage in Sheet Metal Forming-I. Physical Behavior; Damage in Sheet Metal Forming-II. Plastic Instability
,”
Acta Metallurgica
, Vol.
30
, p.
1789
1789
.
48.
Sto¨ren
S.
, and
Rice
J. R.
,
1975
, “
Localized Necking in Thin Sheets
,”
J. Mech. Phys. Solids
, Vol.
23
, p.
421
421
.
49.
Tadros
A. K.
, and
Mellor
P. B.
,
1975
, “
Some Comments on the Limit Strains in Sheet Metal Stretching
,”
Int. J. Mech. Sci.
, Vol.
17
, p.
203
203
.
This content is only available via PDF.
You do not currently have access to this content.