Abstract

Among various 3D bioprinting methods, extrusion-based bioprinting stands out for its ability to maintain high cell viability and create intricate scaffold structures. However, working with synthetic polymers or natural shear-thinning hydrogels requires precise control of rheological properties, such as viscosity, to ensure scaffold stability while supporting living cells. Traditionally, researchers address these challenges through extensive experimentation, separately optimizing material properties and bioprinting performance. This process, though effective, is often slow and resource-heavy. To streamline this workflow, computational approaches like machine learning are proving invaluable. In this study, a decision tree model was developed to predict the viscosity of bioinks across various compositions with high accuracy, significantly reducing the trial-and-error phase of experimentation. Once viscosity is optimized, k-means clustering is applied to analyze and group scaffolds based on their mechanical and biological properties. This clustering technique identifies the optimal characteristics for scaffolds, balancing structural fidelity and cell viability. The integration of these computational tools allows researchers to optimize bioink formulations and printing parameters more efficiently. By reducing experimental workload and improving precision, this approach not only accelerates the bioprinting process but also ensures that the resulting scaffolds meet the required mechanical integrity and provide a conducive environment for cell growth. This study represents a significant step forward in tissue engineering, offering a robust, data-driven pathway to enhance both the efficiency and quality of 3D bioprinted constructs.

References

1.
Endres
,
M.
,
Hutmacher
,
D.
,
Salgado
,
A.
,
Kaps
,
C.
,
Ringe
,
J.
,
Reis
,
R.
,
Sittinger
,
M.
,
Brandwood
,
A.
, and
Schantz
,
J.-T.
,
2003
, “
Osteogenic Induction of Human Bone Marrow-Derived Mesenchymal Progenitor Cells in Novel Synthetic Polymer–Hydrogel Matrices
,”
Tissue Eng.
,
9
(
4
), pp.
689
702
.
2.
Muthukrishnan
,
L.
,
2021
, “
Imminent Antimicrobial Bioink Deploying Cellulose, Alginate, EPS and Synthetic Polymers for 3D Bioprinting of Tissue Constructs
,”
Carbohydr. Polym.
,
260
, p.
117774
.
3.
Quigley
,
C.
,
Tuladhar
,
S.
, and
Habib
,
A.
,
2022
, “
A Roadmap to Fabricate Geometrically Accurate Three-Dimensional Scaffolds CO-Printed by Natural and Synthetic Polymers
,”
ASME J. Micro- Nano-Manuf.
,
10
(
2
), p.
021001
.
4.
Izadifar
,
M.
,
Babyn
,
P.
,
Kelly
,
M. E.
,
Chapman
,
D.
, and
Chen
,
X.
,
2017
, “
Bioprinting Pattern-Dependent Electrical/Mechanical Behavior of Cardiac Alginate Implants: Characterization and Ex Vivo Phase-Contrast Microtomography Assessment
,”
Tissue Eng. Part C Methods
,
23
(
9
), pp.
548
564
.
5.
Habib
,
M.
, and
Khoda
,
B.
,
2021
, “
Fiber Filled Hybrid Hydrogel for Bio-Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
143
(
4
), p.
041013
.
6.
Kopač
,
T.
,
Ručigaj
,
A.
, and
Krajnc
,
M.
,
2022
, “
Effect of Polymer-Polymer Interactions on the Flow Behavior of Some Polysaccharide-Based Hydrogel Blends
,”
Carbohydr. Polym.
,
287
, p.
119352
.
7.
Li
,
H.
,
Tan
,
Y. J.
,
Leong
,
K. F.
, and
Li
,
L.
,
2017
, “
3D Bioprinting of Highly Thixotropic Alginate/Methylcellulose Hydrogel With Strong Interface Bonding
,”
ACS Appl. Mater. Interfaces
,
9
(
23
), pp.
20086
20097
.
8.
Bendtsen
,
S. T.
,
Quinnell
,
S. P.
, and
Wei
,
M.
,
2017
, “
Development of a Novel Alginate-Polyvinyl Alcohol-Hydroxyapatite Hydrogel for 3D Bioprinting Bone Tissue Engineered Scaffolds
,”
J. Biomed. Mater. Res., Part A
,
105
(
5
), pp.
1457
1468
.
9.
Ribeiro
,
A.
,
Blokzijl
,
M. M.
,
Levato
,
R.
,
Visser
,
C. W.
,
Castilho
,
M.
,
Hennink
,
W. E.
,
Vermonden
,
T.
, and
Malda
,
J.
,
2017
, “
Assessing Bioink Shape Fidelity to Aid Material Development in 3D Bioprinting
,”
Biofabrication
,
10
(
1
), p.
014102
.
10.
Schwab
,
A.
,
Levato
,
R.
,
D’Este
,
M.
,
Piluso
,
S.
,
Eglin
,
D.
, and
Malda
,
J.
,
2020
, “
Printability and Shape Fidelity of Bioinks in 3D Bioprinting
,”
Chem. Rev.
,
120
(
19
), pp.
11028
11055
.
11.
Jessop
,
Z. M.
,
Al-Sabah
,
A.
,
Gao
,
N.
,
Kyle
,
S.
,
Thomas
,
B.
,
Badiei
,
N.
,
Hawkins
,
K.
, and
Whitaker
,
I. S.
,
2019
, “
Printability of Pulp Derived Crystal, Fibril and Blend Nanocellulose-Alginate Bioinks for Extrusion 3D Bioprinting
,”
Biofabrication
,
11
(
4
), p.
045006
.
12.
Duin
,
S.
,
Schütz
,
K.
,
Ahlfeld
,
T.
,
Lehmann
,
S.
,
Lode
,
A.
,
Ludwig
,
B.
, and
Gelinsky
,
M.
,
2019
, “
3D Bioprinting of Functional Islets of Langerhans in an Alginate/Methylcellulose Hydrogel Blend
,”
Adv. Healthcare Mater.
,
8
(
7
), p.
1801631
.
13.
Ahn
,
G.
,
Min
,
K.-H.
,
Kim
,
C.
,
Lee
,
J.-S.
,
Kang
,
D.
,
Won
,
J.-Y.
,
Cho
,
D.-W.
, et al
,
2017
, “
Precise Stacking of Decellularized Extracellular Matrix Based 3D Cell-Laden Constructs by a 3D Cell Printing System Equipped With Heating Modules
,”
Sci. Rep.
,
7
(
1
), p.
8624
.
14.
Kuo
,
C.
,
Qin
,
H.
,
Acuña
,
D.
,
Cheng
,
Y.
, and
Jiang
,
X.
,
2019
, “
Printability of Hydrogel Composites Using Extrusion-Based 3D Printing and Post-Processing With Calcium Chloride
,”
J. Food Sci. Nutr.
,
5
, p.
051
.
15.
He
,
Y.
,
Yang
,
F.
,
Zhao
,
H.
,
Gao
,
Q.
,
Xia
,
B.
, and
Fu
,
J.
,
2016
, “
Research on the Printability of Hydrogels in 3D Bioprinting
,”
Sci. Rep.
,
6
(
1
), p.
29977
.
16.
Habib
,
M. A.
, and
Khoda
,
B.
,
2018
, “
Development of Clay Based Novel Bio-Ink for 3D Bio-Printing Process
,”
Procedia Manuf.
,
26
, pp.
846
856
.
17.
Colosi
,
C.
,
Shin
,
S. R.
,
Manoharan
,
V.
,
Massa
,
S.
,
Costantini
,
M.
,
Barbetta
,
A.
,
Dokmeci
,
M. R.
,
Dentini
,
M.
, and
Khademhosseini
,
A.
,
2016
, “
Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink
,”
Adv. Mater.
,
28
(
4
), pp.
677
684
.
18.
Ahlfeld
,
T.
,
Cidonio
,
G.
,
Kilian
,
D.
,
Duin
,
S.
,
Akkineni
,
A.
,
Dawson
,
J.
,
Yang
,
S.
,
Lode
,
A.
,
Oreffo
,
R.
, and
Gelinsky
,
M.
,
2017
, “
Development of a Clay Based Bioink for 3D Cell Printing for Skeletal Application
,”
Biofabrication
,
9
(
3
), p.
034103
.
19.
Hölzl
,
K.
,
Lin
,
S.
,
Tytgat
,
L.
,
Van Vlierberghe
,
S.
,
Gu
,
L.
, and
Ovsianikov
,
A.
,
2016
, “
Bioink Properties Before, During and After 3D Bioprinting
,”
Biofabrication
,
8
(
3
), p.
032002
.
20.
Zhang
,
H.
,
Yang
,
K.
,
Liu
,
G.
,
Zhu
,
S.
,
Yin
,
R.
, and
Zhang
,
W.
, “
3D Bioprinting of Multi-biomaterial/Crosslinked Bioink for Skin Tissue Engineering
,”
Proceedings of Frontiers in Bioengineering and Biotechnology. Conference Abstract: 10th World Biomaterials Congress
.
21.
Ashammakhi
,
N.
,
Ahadian
,
S.
,
Xu
,
C.
,
Montazerian
,
H.
,
Ko
,
H.
,
Nasiri
,
R.
,
Barros
,
N.
, and
Khademhosseini
,
A.
,
2019
, “
Bioinks and Bioprinting Technologies to Make Heterogeneous and Biomimetic Tissue Constructs
,”
Mater. Today Bio
,
1
, p.
100008
.
22.
Chen
,
Y.
,
Xiong
,
X.
,
Liu
,
X.
,
Cui
,
R.
,
Wang
,
C.
,
Zhao
,
G.
,
Zhi
,
W.
, et al
,
2020
, “
3D Bioprinting of Shear-Thinning Hybrid Bioinks With Excellent Bioactivity Derived From Gellan/Alginate and Thixotropic Magnesium Phosphate-Based Gels
,”
J. Mater. Chem. B
,
8
(
25
), pp.
5500
5514
.
23.
De Santis
,
M. M.
,
Alsafadi
,
H. N.
,
Tas
,
S.
,
Bölükbas
,
D. A.
,
Prithiviraj
,
S.
,
Da Silva
,
I. A.
,
Mittendorfer
,
M.
, et al
,
2021
, “
Extracellular-Matrix-Reinforced Bioinks for 3D Bioprinting Human Tissue
,”
Adv. Mater.
,
33
(
3
), p.
2005476
.
24.
Quigley
,
C.
,
Limon
,
S. M.
,
Sarah
,
R.
, and
Habib
,
A.
,
2023
, “
Factorial Design of Experiment Method to Characterize Bioprinting Process Parameters to Obtain the Targeted Scaffold Porosity
,”
3D Print. Addit. Manuf.
,
11
(
5
), pp.
e1899
e1908
.
25.
Lee
,
J.
,
Oh
,
S. J.
,
An
,
S. H.
,
Kim
,
W.-D.
, and
Kim
,
S.-H.
,
2020
, “
Machine Learning-Based Design Strategy for 3D Printable Bioink: Elastic Modulus and Yield Stress Determine Printability
,”
Biofabrication
,
12
(
3
), p.
035018
.
26.
Li
,
H.
,
Tian
,
H.
,
Chen
,
Y.
,
Xiao
,
S.
,
Zhao
,
X.
,
Gao
,
Y.
, and
Zhang
,
L.
,
2023
, “
Analyzing and Predicting the Viscosity of Polymer Nanocomposites in the Conditions of Temperature, Shear Rate, and Nanoparticle Loading With Molecular Dynamics Simulations and Machine Learning
,”
J. Phys. Chem. B
,
127
(
15
), pp.
3596
3605
.
27.
Erps
,
T.
,
Foshey
,
M.
,
Luković
,
M. K.
,
Shou
,
W.
,
Goetzke
,
H. H.
,
Dietsch
,
H.
,
Stoll
,
K.
,
von Vacano
,
B.
, and
Matusik
,
W.
,
2021
, “
Accelerated Discovery of 3D Printing Materials Using Data-Driven Multiobjective Optimization
,”
Sci. Adv.
,
7
(
42
), p.
eabf7435
.
28.
Malekpour
,
A.
, and
Chen
,
X.
,
2022
, “
Printability and Cell Viability in Extrusion-Based Bioprinting From Experimental, Computational, and Machine Learning Views
,”
J. Funct. Biomater.
,
13
(
2
), p.
40
.
29.
An
,
J.
,
Chua
,
C. K.
, and
Mironov
,
V.
,
2021
, “
Application of Machine Learning in 3D Bioprinting: Focus on Development of Big Data and Digital Twin
,”
Int. J. Bioprint.
,
7
(
1
), p.
342
.
30.
Schwartz
,
R.
,
Malpica
,
M.
,
Thompson
,
G. L.
, and
Miri
,
A. K.
,
2020
, “
Cell Encapsulation in Gelatin Bioink Impairs 3D Bioprinting Resolution
,”
J. Mech. Behav. Biomed. Mater.
,
103
, p.
103524
.
31.
Webb
,
B.
, and
Doyle
,
B. J.
,
2017
, “
Parameter Optimization for 3D Bioprinting of Hydrogels
,”
Bioprinting
,
8
, pp.
8
12
.
32.
Ruberu
,
K.
,
Senadeera
,
M.
,
Rana
,
S.
,
Gupta
,
S.
,
Chung
,
J.
,
Yue
,
Z.
,
Venkatesh
,
S.
, and
Wallace
,
G.
,
2021
, “
Coupling Machine Learning With 3D Bioprinting to Fast Track Optimisation of Extrusion Printing
,”
Appl. Mater. Today
,
22
, p.
100914
.
33.
Habib
,
A.
,
Sarah
,
R.
,
Tuladhar
,
S.
,
Khoda
,
B.
, and
Limon
,
S. M.
,
2024
, “
Modulating Rheological Characteristics of Bio-Ink With Component Weight and Shear Rate for Enhanced Bioprinted Scaffold Fidelity
,”
Bioprinting
,
38
, p.
e00332
.
34.
Freeman
,
S.
,
Calabro
,
S.
,
Williams
,
R.
,
Jin
,
S.
, and
Ye
,
K.
,
2022
, “
Bioink Formulation and Machine Learning-Empowered Bioprinting Optimization
,”
Front. Bioeng. Biotechnol.
,
10
, p.
913579
.
35.
Habib
,
M. A.
, and
Khoda
,
B.
,
2022
, “
Rheological Analysis of Bio-Ink for 3D Bio-Printing Processes
,”
J. Manuf. Processes
,
76
, pp.
708
718
.
36.
Mironov
,
V.
,
Kasyanov
,
V.
,
Drake
,
C.
, and
Markwald
,
R. R.
,
2008
, “
Organ Printing: Promises and Challenges
,”
Regener. Med.
,
3
(
1
), pp.
93
103
.
37.
Müller
,
S. J.
,
Fabry
,
B.
, and
Gekle
,
S.
,
2023
, “
Predicting Cell Stress and Strain During Extrusion Bioprinting
,”
Phys. Rev. Appl.
,
19
(
6
), p.
064061
.
38.
Wu
,
W.
,
Zhao
,
Z.
,
Wang
,
Y.
,
Zhu
,
G.
,
Tan
,
K.
,
Liu
,
M.
, and
Li
,
L.
,
2024
, “
Biomechanical Effects of Mechanical Stress on Cells Involved in Fracture Healing
,”
Orthop. Surg.
,
16
(
4
), pp.
811
820
.
39.
Espina
,
J. A.
,
Cordeiro
,
M. H.
,
Milivojevic
,
M.
,
Pajić-Lijaković
,
I.
, and
Barriga
,
E. H.
,
2023
, “
Response of Cells and Tissues to Shear Stress
,”
J. Cell Sci.
,
136
(
18
), p.
jcs260985
.
40.
Osborn
,
E. A.
,
Rabodzey
,
A.
,
Dewey
,
C. F.
, Jr.
, and
Hartwig
,
J. H.
,
2006
, “
Endothelial Actin Cytoskeleton Remodeling During Mechanostimulation With Fluid Shear Stress
,”
Am. J. Physiol. Cell Physiol.
,
290
(
2
), pp.
C444
C452
.
41.
Han
,
Y.
, and
Wang
,
L.
,
2017
, “
Sodium Alginate/Carboxymethyl Cellulose Films Containing Pyrogallic Acid: Physical and Antibacterial Properties
,”
J. Sci. Food Agric.
,
97
(
4
), pp.
1295
1301
.
42.
Habib
,
M.
,
Limon
,
S. M.
,
Quigley
,
C.
, and
Sarah
,
R.
, “
Advancing Scaffold Porosity Through a Machine Learning Framework in Extrusion Based 3D Bioprinting
,”
Front. Mater.
,
10
, p.
1337485
.
43.
Habib
,
A.
,
Sathish
,
V.
,
Mallik
,
S.
, and
Khoda
,
B.
,
2018
, “
3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel
,”
Materials
,
11
(
3
), p.
454
.
44.
Habib
,
A.
, and
Khoda
,
B.
,
2019
, “
Development of Clay Based Novel Hybrid Bio-Ink for 3D Bio-Printing Process
,”
J. Manuf. Processes
,
38
, pp.
76
87
.
45.
Saini
,
G.
,
Segaran
,
N.
,
Mayer
,
J. L.
,
Saini
,
A.
,
Albadawi
,
H.
, and
Oklu
,
R.
, “
Applications of 3D Bioprinting in Tissue Engineering and Regenerative Medicine
,”
J. Clin. Med.
,
10
(
21
), p.
4966
.
46.
Bendtsen
,
S. T.
, and
Wei
,
M.
,
2017
, “
In Vitro Evaluation of 3D Bioprinted Tri-Polymer Network Scaffolds for Bone Tissue Regeneration
,”
J. Biomed. Mater. Res., Part A
,
105
(
12
), pp.
3262
3272
.
47.
Yu
,
Y.
,
Moncal
,
K. K.
,
Li
,
J.
,
Peng
,
W.
,
Rivero
,
I.
,
Martin
,
J. A.
, and
Ozbolat
,
I. T.
,
2016
, “
Three-Dimensional Bioprinting Using Self-Assembling Scalable Scaffold-Free “Tissue Strands” as a New Bioink
,”
Sci. Rep.
,
6
(
1
), p.
28714
.
48.
Quigley
,
C.
,
Tuladhar
,
S.
,
Adhikari
,
S.
, and
Habib
,
M. A.
, “
Systemic Control of 3D Bioprinting Process Parameters to Achieve Defined Scaffold Porosity
,”
Proceedings of the International Manufacturing Science and Engineering Conference
,
American Society of Mechanical Engineers
, p.
V001T003A007
.
49.
Loh
,
W. Y.
,
2014
, “
Fifty Years of Classification and Regression Trees
,”
Int. Stat. Rev.
,
82
(
3
), pp.
329
348
.
50.
Quinlan
,
J. R.
,
1986
, “
Induction of Decision Trees
,”
Mach. Learn.
,
1
(
1
), pp.
81
106
.
51.
James
,
G.
,
Witten
,
D.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2013
,
An Introduction to Statistical Learning
,
Springer
,
New York
.
52.
Witten
,
I. H.
, and
Frank
,
E.
,
2002
, “
Data Mining: Practical Machine Learning Tools and Techniques With Java Implementations
,”
ACM Sigmod Record
,
31
(
1
), pp.
76
77
.
53.
Maimon
,
O.
, and
Rokach
,
L.
,
2005
,
Data Mining and Knowledge Discovery Handbook
,
Springer
,
New York
.
54.
Ikotun
,
A. M.
,
Ezugwu
,
A. E.
,
Abualigah
,
L.
,
Abuhaija
,
B.
, and
Heming
,
J.
,
2023
, “
K-Means Clustering Algorithms: A Comprehensive Review, Variants Analysis, and Advances in the Era of Big Data
,”
Inf. Sci.
,
622
, pp.
178
210
.
55.
Kanungo
,
T.
,
Mount
,
D. M.
,
Netanyahu
,
N. S.
,
Piatko
,
C. D.
,
Silverman
,
R.
, and
Wu
,
A. Y.
,
2002
, “
An Efficient k-Means Clustering Algorithm: Analysis and Implementation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
24
(
7
), pp.
881
892
.
56.
Pertiwi
,
A.
,
Yulianti
,
E.
,
Khoiroh
,
L. M.
, and
Yusniyanti
,
F.
,
2021
, “
Variation of Alginate: Carboxymethyl Cellulose on Making Beads CMC From Cellulose of Corn Stalk
.”
57.
Lan
,
W.
,
He
,
L.
, and
Liu
,
Y.
,
2018
, “
Preparation and Properties of Sodium Carboxymethyl Cellulose/Sodium Alginate/Chitosan Composite Film
,”
Coatings
,
8
(
8
), p.
291
.
58.
Peptu
,
C. A.
,
Băcăiță
,
E. S.
,
Savin
,
C.-L.
,
Luțcanu
,
M.
, and
Agop
,
M.
,
2021
, “
Hydrogels Based on Alginates and Carboxymethyl Cellulose With Modulated Drug Release—An Experimental and Theoretical Study
,”
Polymers
,
13
(
24
), p.
4461
.
59.
García
,
A.
,
Culebras
,
M.
,
Collins
,
M. N.
, and
Leahy
,
J. J.
,
2018
, “
Stability and Rheological Study of Sodium Carboxymethyl Cellulose and Alginate Suspensions as Binders for Lithium Ion Batteries
,”
J. Appl. Polym. Sci.
,
135
(
17
), p.
46217
.
60.
Tuladhar
,
S.
,
Clark
,
S.
, and
Habib
,
A.
,
2023
, “
Tuning Shear Thinning Factors of 3D Bio-Printable Hydrogels Using Short Fiber
,”
Materials
,
16
(
2
), p.
572
.
You do not currently have access to this content.