Graphical Abstract Figure

This study demonstrates that laser shock peening (LSP) improves SCC resistance in LPBF 316L stainless steel, with varying effects depending on build surface orientation. The findings link residual stress, texture, and microstructural factors to different failure mechanisms, supported by dynamic crack modeling. Electrochemical investigation of the altered surfaces demonstrate the improved resistance to ion exchange in corrosive environments

Graphical Abstract Figure

This study demonstrates that laser shock peening (LSP) improves SCC resistance in LPBF 316L stainless steel, with varying effects depending on build surface orientation. The findings link residual stress, texture, and microstructural factors to different failure mechanisms, supported by dynamic crack modeling. Electrochemical investigation of the altered surfaces demonstrate the improved resistance to ion exchange in corrosive environments

Close modal

Abstract

Laser shock peening (LSP) is investigated for its use in altering the electrochemical and wetting behavior of 316L stainless steel made with laser powder bed fusion (LPBF). The corrosion performance of LPBF stainless steel varies between studies and build parameters, thus motivating the search for postprocessing methods that enable wetted surface applications. Compressive surface stress has been demonstrated to reduce corrosion rate in additively manufactured metal, and LSP is known to impart compressive residual stress into metal targets. Wettability also affects corrosion behavior, and LSP induces hydrophobicity. LSP is, therefore, a promising tool for improving corrosion behavior of LPBF stainless steel. This paper examines the electrochemical properties of LPBF stainless steel before and after LSP with electrochemical impedance spectroscopy and potentiokinetic measurements. Contact angle, surface free energy, and surface finish are studied with dynamic contact angle measurements and profilometry. X-ray diffraction and energy-dispersive X-ray spectroscopy measure residual stress and surface chemistry. The top surface perpendicular to the build direction (XY) and the wall surface parallel with the build direction (XZ) are studied for all measurements due to the large differences in roughness and mechanical properties between these surfaces. LSP increases pitting potential for both XY and XZ surfaces and causes an increase to the surface electrochemical impedance. LSP also increases the contact angle of liquids on both surfaces. These changes to electrochemistry and wettability are attributed in part to surface morphology and surface chemistry alterations as well as the inducement of compressive residual stress.

References

1.
Patel
,
S.
,
2021
, “
Nuclear First: 3D-Printed Safety-Related Components Installed at Browns Ferry
,” Power: News & Technology for the Global Energy Industry.
2.
Anderson
,
S. A.
, and
Uriarte
,
C.
,
2015
, “
Final Technical Report on Laser Direct Manufacturing (LDM) for Nuclear Power Components
,” Lockeed Martin.
3.
Geenen
,
K.
,
Rottger
,
A.
, and
Theisen
,
W.
,
2016
, “
Corrosion Behavior of 316L Austenitic Steel Processed by Selective Laser Melting, Hot-Isostatic Pressing, and Casting
,”
Mater. Corros.
,
68
(
7
), pp.
764
775
.
4.
Schaller
,
R.
,
Taylor
,
J. M.
,
Rodelas
,
J.
, and
Shindelholz
,
E. J.
,
2017
, “
Corrosion Properties of Powder Bed Fusion Additively Manufactured 17-4 pH Stainless Steel
,”
Corrosion
,
73
(
7
), pp.
796
807
.
5.
Vukkum
,
V. B.
, and
Gupta
,
R. K.
,
2022
, “
Review on Corrosion Performance of Laser Powder-Bed Fusion Printed 316L Stainless Steel: Effect of Processing Parameters, Manufacturing Defects, Post-Processing, Feedstock, and Microstructure
,”
Mater. Des.
,
221
, p.
110874
.
6.
Macatangay
,
D. A.
,
Thomas
,
S.
,
Birbilis
,
N.
, and
Kelly
,
R. G.
,
2018
, “
Unexpected Interface Corrosion and Sensitization Susceptibility in Additively Manufactured Austenitic Stainless Steel
,”
Corros. Commun.
,
74
(
2
), pp.
153
157
.
7.
Laleh
,
M.
,
Hughes
,
A. E.
,
Xu
,
W.
,
Haghdadi
,
N.
,
Wang
,
K.
,
Cizek
,
P.
,
Gibson
,
I.
, and
Tan
,
M. Y.
,
2019
, “
On the Unusual Intergranular Corrosion Resistance of 316L Stainless Steel Additively Manufactured by Selective Laser Melting
,”
Corros. Sci.
,
161
, p.
108189
.
8.
Jones
,
R. H.
,
1992
,
Stress-Corrosion Cracking: Materials Performance and Evaluations
,
ASM International
,
Materials Park, OH
.
9.
Mercelis
,
P.
, and
Kruth
,
J.-P.
,
2006
, “
Residual Stresses in Selective Laser Sintering
,”
Rapid Prototyp. J.
,
12
(
5
), pp.
254
265
.
10.
Brandal
,
G.
, and
Yao
,
Y. L.
,
2017
, “
Material Influence on Mitigation of Stress Corrosion Cracking via Laser Shock Peening
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
01 2002
.
11.
Cruz
,
V.
,
Chao
,
Q.
,
Birbilis
,
N.
,
Fabijanic
,
D.
,
Hodgson
,
P. D.
, and
Thomas
,
S.
,
2020
, “
Electrochemical Studies on the Effect of Residual Stress on the Corrosion of 316L Manufactured by Selective Laser Melting
,”
Corros. Sci.
,
164
, p.
108314
.
12.
Takakuwa
,
O.
, and
Soyama
,
H.
,
2015
, “
Effect of Residual Stress on the Corrosion Behavior of Austenitic Stainless Steel
,”
Adv. Chem. Eng. Sci.
,
5
(
1
), pp.
62
71
.
13.
Peyre
,
P.
,
Scherpereel
,
X.
,
Berthe
,
L.
,
Carboni
,
C.
,
Fabbro
,
R.
,
Beranger
,
G.
, and
Lemaitre
,
C.
,
2000
, “
Surface Modifications Induced in 316L Steel by Laser Peening and Shot-Peening. Influence on Pitting Corrosion Resistance
,”
Mater. Sci. Eng., A
,
280
(
2
), pp.
294
302
.
14.
Liu
,
X.
, and
Frankel
,
G. S.
,
2006
, “
Effects of Compressive Stress on Localized Corrosion in AA2024-T3
,”
Corros. Sci.
,
48
(
10
), pp.
3309
3329
.
15.
Wang
,
C.
,
Bian
,
H.
,
Luo
,
K.
,
Alexandrov
,
I. V.
,
Su
,
Y.
,
Zhang
,
Q.
,
Bu
,
X.
, and
Lu
,
J.
,
2022
, “
Laser Shock Peening-Induced Carbide Evolution and Remarkable Improvement in Electrochemical and Long-Term Immersion Corrosion Resistance of 2Cr12NiMoWV Martensitic Stainless Steel
,”
Surf. Coat. Technol.
,
451
, p.
129034
.
16.
Krawiec
,
H.
,
Vignal
,
V.
,
Amar
,
H.
, and
Peyre
,
P.
,
2011
, “
Local Electrochemical Impedance Spectroscopy Study of the Influence of Ageing in Air and Laser Shock Processing on the Micro-Electrochemical Behaviour of AA2050-T8 Aluminium Alloy
,”
Electrochim. Acta
,
56
(
26
), pp.
9581
9587
.
17.
Brandal
,
G.
, and
Yao
,
Y. L.
,
2017
, “
Laser Shock Peening for Suppression of Hydrogen-Induced Martensitic Transformation in Stress Corrosion Cracking
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081015
.
18.
Chao
,
Q.
,
Cruz
,
V.
,
Thomas
,
S.
,
Birbilis
,
N.
,
Collins
,
P.
,
Taylor
,
A.
,
Hodgson
,
P. D.
, and
Fabijanic
,
D.
,
2017
, “
On the Enhanced Corrosion Resistance of a Selective Laser Melted Austenitic Stainless Steel
,”
Scr. Mater.
,
141
, pp.
94
98
.
19.
Peyre
,
P.
, and
Fabbro
,
R.
,
1995
, “
Laser Shock Processing: A Review of the Physics and Applications
,”
Opt. Quantum Electron.
,
27
(
12
), pp.
1213
1229
.
20.
Kalentics
,
N.
,
Boillat
,
E.
,
Ciric-Kostic
,
S.
,
Bogojevic
,
N.
, and
Loge
,
R. E.
,
2017
, “
Tailoring Residual Stress Profile of Selective Laser Melted Parts by Laser Shock Peening
,”
Addit. Manuf.
,
16
, pp.
90
97
.
21.
Over
,
V.
,
Donovan
,
J.
, and
Yao
,
Y. L.
,
2023
, “
The Effect of Laser Shock Peening on Back Stress of Additively Manufactured Stainless Steel Parts
,”
ASME J. Manuf. Sci. Eng.
,
145
(
4
), p.
041005
.
22.
Maleki
,
E.
,
Unal
,
O.
,
Shao
,
S.
, and
Shamsaei
,
N.
,
2023
, “
Effects of Laser Shock Peening on Corrosion Resistance of Additive Manufactured AlSi10Mg
,”
Coatings
,
13
(
5
), p.
874
.
23.
Thangmani
,
G.
,
Palani
,
I. A.
,
Singh
,
M. K.
,
Rai
,
D. K.
,
Priyan
,
V. G. S.
, and
Subbu
,
S. K.
,
2023
, “
Post-Processing of Wire Arc Additive Manufactured Stainless Steel 308L to Enhance Compression and Corrosion Behavior Using Laser Shock Peening Process
,”
J. Mater. Eng. Perfor.
, pp.
1059
9495
.
24.
Annakodi
,
V. A.
,
Singh
,
A. R.
,
Jaylakshmi
,
S.
,
Zhang
,
Y.
,
Khan
,
M. A.
,
Rao
,
K. S.
, and
Shabadi
,
R.
,
2022
, “
Patterning SS304 Surface at Microscale to Reduce Wettability and Corrosion in Saline Water
,”
Metals
,
12
(
7
), p.
1137
.
25.
Holder
,
D.
,
Hetzel
,
F.
, and
Graf
,
T.
,
2022
, “
Surface Treatment of Additively Manufactured Metal Parts for Any Arbitrary Wetting State Between Superhydrophilic and Super Hydrophobic
,”
12th CIRP Conference on Photonic Technologies
,
Furth, Germany
,
Sept. 4–8
, Vol. 111, pp.
715
720
.
26.
Shen
,
X.
,
Shukla
,
P.
,
Swanson
,
P.
,
An
,
Z.
,
Prabhakarn
,
S.
,
Waugh
,
D.
,
Nie
,
X.
,
Mee
,
C.
,
Nakhodchi
,
S.
, and
Lawrence
,
J.
,
2019
, “
Altering the Wetting Properties of Orthopaedic Titanium Alloy (Tie6Ale7Nb) Using Laser Shock Peening
,”
J. Alloys Compd.
,
801
, pp.
327
342
.
27.
Gujba
,
A. K.
, and
Medraj
,
M.
,
2014
, “
Laser Peening Process and Its Impact on Materials Properties in Comparison With Shot Peening and Ultrasonic Impact Peening
,”
Materials
,
7
(
12
), pp.
7925
7974
.
28.
Dai
,
F.
,
Zhou
,
J.
,
Lu
,
J.
, and
Luo
,
X.
,
2016
, “
A Technique to Decrease Surface Roughness in Overlapping Laser Shock Peening
,”
Appl. Surf. Sci.
,
370
, pp.
501
507
.
29.
Siddaiah
,
A.
,
Mao
,
B.
,
Liao
,
Y.
, and
Menezes
,
P. L.
,
2018
, “
Surface Characterization and Tribological Performance of Laser Shock Peened Steel Surfaces
,”
Surf. Coat. Technol.
,
351
, pp.
188
197
.
30.
Kim
,
J. J.
, and
Young
,
Y. M.
,
2013
, “
Study on the Passive Film of Type 316 Stainless Steel
,”
Int. J. Electrochem. Sci.
,
8
(
10
), pp.
11847
11859
.
31.
Macdonald
,
D.
,
2011
, “
The History of the Point Defect Model for the Passive State: A Brief Review of Film Growth Aspects
,”
Electrochim. Acta
,
56
(
4
), pp.
1761
1772
.
32.
Magar
,
H. S.
,
Hassan
,
R. Y. A.
, and
Mulchandani
,
A.
,
2021
, “
Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications
,”
Sensors
,
21
(
19
), p.
6578
.
33.
Yang
,
X.
,
Tang
,
F.
,
Hao
,
X.
, and
Li
,
Z.
,
2021
, “
Oxide Evolution During the Solidification of 316L Stainless Steel From Additive Manufacturing Powders With Different Oxygen Contents
,”
Metall. Mater. Trans. B
,
52
(
B
), pp.
2253
2262
.
34.
Melia
,
M. A.
,
Duran
,
J. G.
,
Koepke
,
J. R.
,
Saiz
,
D. J.
,
Jared
,
B. H.
, and
Schindelholz
,
E. J.
,
2020
, “
How Build Angle and Post-Processing Impact Roughness and Corrosion of Additively Manufactured 316L Stainless Steel
,”
npj Mater. Degrad.
,
4
(
21
).
35.
Puigdomenech
,
I.
,
2010
, “Medusa Software, Chemical Equilibrium Diagrams,” https://www.kth.se/che/medusa.
36.
Lodhi
,
M. J. K.
,
Deen
,
K. M.
, and
Haider
,
W.
,
2018
, “
Corrosion Behavior of Additively Manufactured 316L Stainless Steel in Acidic Media
,”
Materiala
,
2
, pp.
111
121
.
37.
Laurent
,
B.
,
Gruet
,
N.
,
Gwinner
,
B.
,
Miserque
,
F.
,
Rousseau
,
K.
, and
Ogle
,
K.
,
2017
, “
Dissolution and Passivation of a Silicon-Rich Austenitic Stainless Steel During Active-Passive Cycles in Sulfuric and Nitric Acid
,”
J. Electrochem. Soc.
,
164
(
13
), pp.
C892
C900
.
38.
Macdonald
,
D. D.
,
1999
, “
Passivity—The Key to our Metals-Based Civilization
,”
Pure Appl. Chem.
,
71
(
6
), pp.
951
978
.
39.
Sander
,
G.
,
Thomas
,
S.
,
Cruz
,
V.
,
Jurg
,
M.
,
Birbilis
,
N.
,
Gao
,
X.
,
Brameld
,
M.
, and
Hutchinson
,
C. R.
,
2017
, “
On The Corrosion and Metastable Pitting Characteristics of 316L Stainless Steel Produced by Selective Laser Melting
,”
J. Electrochem. Soc.
,
164
(
6
), pp.
C250
C257
.
40.
du Plessis
,
A.
,
Glaser
,
D.
,
Moller
,
H.
,
Mathe
,
N.
,
Tshabalala
,
L.
,
Mfusi
,
B.
, and
Mostert
,
R.
,
2019
, “
Pore Closure Effect of Laser Shock Peening of Additively Manufactured AlSi10Mg
,”
3D Print. Addit. Manuf.
,
6
(
5
), pp.
245
252
.
41.
Adamson
,
A. W.
, and
Gast
,
A. P.
,
1997
,
Physical Chemistry of Surfaces
,
John Wiley & Sons, Inc.
,
New York
.
42.
Sedlacek
,
M.
,
Podgornik
,
B.
, and
Vizintin
,
J.
,
2012
, “
Correlation Between Standard Roughness Parameters Skewness and Kurtosis and Tribological Behaviour of Contact Surfaces
,”
Tribol. Int.
,
48
, pp.
102
112
.
43.
Chen
,
Y.
,
Schaeffer
,
B. M.
,
Jenson
,
R.
, and
Weislogel
,
M. M.
,
2012
, “
Surface Evolver—Fluid Interface Tool: Version 1.112 User's Manual
,” Department of Mechanical and Materials Engineering, Portland State University.
44.
Wei
,
X.
,
Zhang
,
C.
, and
Ling
,
X.
,
2017
, “
Effects of Laser Shock Processing on Corrosion Resistance of AISI 304 Stainless Steel in Acid Chloride Solution
,”
J. Alloys Compd.
,
723
, pp.
237
243
.
45.
Caralapatti
,
V. K.
, and
Narayanswamy
,
S.
,
2017
, “
Effect of High Repetition Laser Shock Peening on Biocompatibility and Corrosion Resistance of Magnesium
,”
Opt. Laser Technol.
,
88
, pp.
75
84
.
46.
Rocchini
,
G.
,
1995
, “
The Determination of Tafel Slopes by the Successive Approximation Method
,”
Corros. Sci.
,
37
(
6
), pp.
987
1003
.
47.
Chibowski
,
E.
,
2003
, “
Surface Free Energy of a Solid From Contact Angle Hysteresis
,”
Adv. Colloid Interface Sci.
,
103
(
2
), pp.
149
172
.
48.
Li
,
Q.
,
Zhou
,
P.
, and
Yan
,
H. J.
,
2016
, “
Pinning−Depinning Mechanism of the Contact Line During Evaporation on Chemically Patterned Surfaces: A Lattice Boltzmann Study
,”
Langmuir
,
32
(
37
), pp.
9389
9396
.
You do not currently have access to this content.