Abstract

One of the most promising additive manufacturing technologies for the production of end-use parts is powder bed fusion of polymer with laser beam (PBF-LB/P). This technology can reduce production costs by increasing process efficiency and production speed. As PBF-LB/P is a layer-wise additive manufacturing process, the production speed can be increased by reducing the layering time. Although some operations such as recoating are performed during the layering process, considerable time is spent on laser scanning. To reduce the laser exposure time while maintaining proper powder melting, a high-power beam should be irradiated to the powder layer to prevent energy shortage. However, as the laser beam power increases, the irradiance at the beam center increases significantly, causing powder degradation such as thermal decomposition or sublimation. In this study, an appropriate input energy range was determined by obtaining an input energy limit that does not cause powder deterioration via experimental observations and temperature estimations during the process. Furthermore, the influence of the scanning parameters on the mechanical properties of built specimens was investigated to reduce the layering time within an indicated range. Results show that the mechanical strength of the built parts decreases slightly as the scan spacing increases following the expansion of the beam diameter. This study also validated the effects of scanning parameters on layering time. As a result, by doubling the scan speed and spacing, the layering time can be reduced by up to 1/3.

References

1.
Mwania
,
F. M.
,
Maringa
,
M.
, and
Van Der Walt
,
K.
,
2020
, “
A Review of Methods Used to Reduce the Effects of High Temperature Associated With Polyamide 12 and Polypropylene Laser Sintering
,”
Adv. Polym. Technol.
,
2020
(
1
), p.
9497158
.
2.
Salmi
,
M.
,
Akmal
,
J. S.
,
Pei
,
E.
,
Wolff
,
J.
,
Jaribion
,
A.
, and
Khajavi
,
S. H.
,
2020
, “
3D Printing in COVID-19: Productivity Estimation of the Most Promising Open Source Solutions in Emergency Situations
,”
Appl. Sci.
,
10
(
11
), pp.
1
15
.
3.
Wegner
,
A.
,
2016
, “
New Polymer Materials for the Laser Sintering Process: Polypropylene and Others
,”
Phys. Procedia
,
83
, pp.
1003
1012
.
4.
Hoskins
,
T. J.
,
Dearn
,
K. D.
, and
Kukureka
,
S. N.
,
2018
, “
Mechanical Performance of PEEK Produced by Additive Manufacturing
,”
Polym. Test.
,
70
, pp.
511
519
.
5.
Bourell
,
D. L.
,
Watt
,
T. J.
,
Leigh
,
D. K.
, and
Fulcher
,
B.
,
2014
, “
Performance Limitations in Polymer Laser Sintering
,”
Phys. Procedia
,
56
(
C
), pp.
147
156
.
6.
Liao
,
J.
,
De Kleine
,
R.
,
Kim
,
H. C.
,
Luckey
,
G.
,
Forsmark
,
J.
,
Lee
,
E. C.
, and
Cooper
,
D. R.
,
2023
, “
Assessing the Sustainability of Laser Powder Bed Fusion and Traditional Manufacturing Processes Using a Parametric Environmental Impact Model
,”
Resour. Conserv. Recycl.
,
198
, p.
107138
.
7.
Pavan
,
M.
,
Faes
,
M.
,
Strobbe
,
D.
,
Van Hooreweder
,
B.
,
Craeghs
,
T.
,
Moens
,
D.
, and
Dewulf
,
W.
,
2017
, “
On the Influence of Inter-Layer Time and Energy Density on Selected Critical-to-Quality Properties of PA12 Parts Produced via Laser Sintering
,”
Polym. Test.
,
61
, pp.
386
395
.
8.
Greiner
,
S.
,
Jaksch
,
A.
,
Cholewa
,
S.
, and
Drummer
,
D.
,
2021
, “
Development of Material-Adapted Processing Strategies for Laser Sintering of Polyamide 12
,”
Adv. Ind. Eng. Polym. Res.
,
4
(
4
), pp.
251
263
.
9.
Shen
,
F.
,
Yuan
,
S.
,
Chua
,
C. K.
, and
Zhou
,
K.
,
2018
, “
Development of Process Efficiency Maps for Selective Laser Sintering of Polymeric Composite Powders: Modeling and Experimental Testing
,”
J. Mater. Process. Technol.
,
254
, pp.
52
59
.
10.
Korycki
,
A.
,
Garnier
,
C.
,
Nassiet
,
V.
,
Sultan
,
C. T.
, and
Chabert
,
F.
,
2022
, “
Optimization of Mechanical Properties and Manufacturing Time Through Experimental and Statistical Analysis of Process Parameters in Selective Laser Sintering
,”
Adv. Mater. Sci. Eng.
,
2022
(
1
), p.
2526281
.
11.
Czelusniak
,
T.
, and
Amorim
,
F. L.
,
2020
, “
Selective Laser Sintering of Carbon Fiber-Reinforced PA12: Gaussian Process Modeling and Stochastic Optimization of Process Variables
,”
Int. J. Adv. Manuf. Technol.
,
110
(
7–8
), pp.
2049
2066
.
12.
Sun
,
M. M.
, and
Beaman
,
J. J.
,
1991
, “
A Three Dimensional Model for Selective Laser Sintering
,”
1991 International Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
102
109
.
13.
Drexler
,
M.
,
Lexow
,
M.
, and
Drummer
,
D.
,
2015
, “
Selective Laser Melting of Polymer Powder – Part Mechanics as Function of Exposure Speed
,”
Phys. Procedia
,
78
, pp.
328
336
.
14.
Drummer
,
D.
,
Wudy
,
K.
, and
Drexler
,
M.
,
2014
, “
Influence of Energy Input on Degradation Behavior of Plastic Components Manufactured by Selective Laser Melting
,”
Phys. Procedia
,
56
(
C
), pp.
176
183
.
15.
Vasquez
,
M.
,
Haworth
,
B.
, and
Hopkinson
,
N.
,
2012
, “
Methods for Quantifying the Stable Sintering Region in Laser Sintered Polyamide-12
,”
Polym. Eng. Sci.
,
53
(
6
), pp.
1230
1240
.
16.
Chatham
,
C. A.
,
Bortner
,
M. J.
,
Johnson
,
B. N.
,
Long
,
T. E.
, and
Williams
,
C. B.
,
2021
, “
Predicting Mechanical Property Plateau in Laser Polymer Powder Bed Fusion Additive Manufacturing via the Critical Coalescence Ratio
,”
Mater. Des.
,
201
, p.
109474
.
17.
Starr
,
T. L.
,
Gornet
,
T. J.
, and
Usher
,
J. S.
,
2011
, “
The Effect of Process Conditions on Mechanical Properties of Laser-Sintered Nylon
,”
Rapid Prototyp. J.
,
17
(
6
), pp.
418
423
.
18.
Bierwisch
,
C.
,
Mohseni-Mofidi
,
S.
,
Dietemann
,
B.
,
Grünewald
,
M.
,
Rudloff
,
J.
, and
Lang
,
M.
,
2021
, “
Universal Process Diagrams for Laser Sintering of Polymers
,”
Mater. Des.
,
199
, p.
109432
.
19.
Yamauchi
,
Y.
,
Kigure
,
T.
, and
Niino
,
T.
,
2023
, “
Quantification of Supplied Laser Energy and Its Relationship With Powder Melting Process in PBF-LB/P Using Near-Infrared Laser
,”
J. Manuf. Process.
,
99
, pp.
272
282
.
20.
Yamauchi
,
Y.
,
Kigure
,
T.
,
Isoda
,
K.
, and
Niino
,
T.
,
2021
, “
Powder Bed Penetration Depth Control in Laser Sintering and Effect on Depth of Fusion
,”
Addit. Manuf.
,
46
, p.
102219
.
21.
Yamauchi
,
Y.
,
Kigure
,
T.
, and
Niino
,
T.
,
2023
, “
Determination of Input Laser Energy for Melting Powder Layers of Various Thicknesses in High-Speed PBF-LB/P Using Near-Infrared Laser and Absorbent
,”
34th Annual International Solid Freefrom Fabrication Symposium – An Additive Manufacturing Conference
,
Austin, TX
, pp.
46
57
.
22.
Goodridge
,
R. D.
,
Tuck
,
C. J.
, and
Hague
,
R. J. M.
,
2012
, “
Laser Sintering of Polyamides and Other Polymers
,”
Prog. Mater. Sci.
,
57
(
2
), pp.
229
267
.
23.
Czelusniak
,
T.
, and
Amorim
,
F. L.
,
2021
, “
Influence of Energy Density on Polyamide 12 Processed by SLS: From Physical and Mechanical Properties to Microstructural and Crystallization Evolution
,”
Rapid Prototyp. J.
,
27
(
6
), pp.
1189
1205
.
24.
Vande Ryse
,
R.
,
Edeleva
,
M.
,
Patoor
,
A.
,
Pille
,
F.
,
D’hooge
,
D. R.
, and
Cardon
,
L.
,
2023
, “
Upgrading Analytical Models to Predict the Onset of Degradation in Selective Laser Sintering
,”
Virtual Phys. Prototyp.
,
19
(
1
), p.
e2285414
.
25.
Edith Wiria
,
F.
,
Fai Leong
,
K.
, and
Kai Chua
,
C.
,
2010
, “
Modeling of Powder Particle Heat Transfer Process in Selective Laser Sintering for Fabricating Tissue Engineering Scaffolds
,”
Rapid Prototyp. J.
,
16
(
6
), pp.
400
410
.
26.
Peyre
,
P.
,
Rouchausse
,
Y.
,
Defauchy
,
D.
, and
Régnier
,
G.
,
2015
, “
Experimental and Numerical Analysis of the Selective Laser Sintering (SLS) of PA12 and PEKK Semi-Crystalline Polymers
,”
J. Mater. Process. Technol.
,
225
, pp.
326
336
.
27.
Kundakcioglu
,
E.
,
Lazoglu
,
I.
, and
Rawal
,
S.
,
2016
, “
Transient Thermal Modeling of Laser-Based Additive Manufacturing for 3D Freeform Structures
,”
Int. J. Adv. Manuf. Technol.
,
85
(
1–4
), pp.
493
501
.
28.
Kigure
,
T.
,
Yamauchi
,
Y.
, and
Niino
,
T.
,
2022
, “
Investigation Into Effect of Beam Defocusing in Low Temperature Laser Sintering of PEEK
,”
33rd Annual International Solid Freefrom Fabrication Symposium – An Additive Manufacturing Conference
,
Austin, TX
, pp.
2271
2281
.
29.
Ito
,
F.
, and
Niino
,
T.
,
2016
, “
Implementation of Tophat Profile Laser Into Low Temperature Process of Poly Phenylene Sulfide
,”
27th Annual International Solid Freefrom Fabrication Symposium – An Additive Manufacturing Conference SFF 2016
,
Austin, TX
, pp.
2194
2203
.
30.
Niino
,
T.
, and
Uehara
,
T.
,
2015
, “
Low Temperature Selective Laser Melting of High Temperature Plastic
,”
2015 International Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
866
877
.
31.
Ho
,
H. C. H.
,
Cheung
,
W. L.
, and
Gibson
,
I.
,
2002
, “
Effects of Graphite Powder on the Laser Sintering Behaviour of Polycarbonate
,”
Rapid Prototyp. J.
,
8
(
4
), pp.
233
242
.
32.
Bourell
,
D.
,
Coholich
,
J.
,
Chalancon
,
A.
, and
Bhat
,
A.
,
2017
, “
Evaluation of Energy Density Measures and Validation for Powder Bed Fusion of Polyamide
,”
CIRP Ann.
,
66
(
1
), pp.
217
220
.
33.
Jia
,
H.
,
Sun
,
H.
,
Wang
,
H.
,
Wu
,
Y.
, and
Wang
,
H.
,
2021
, “
Scanning Strategy in Selective Laser Melting (SLM): A Review
,”
Int. J. Adv. Manuf. Technol.
,
113
(
9–10
), pp.
2413
2435
.
34.
Tangestani
,
R.
,
Sabiston
,
T.
,
Chakraborty
,
A.
,
Yuan
,
L.
,
Krutz
,
N.
, and
Martin
,
É
,
2021
, “
An Efficient Track-Scale Model for Laser Powder Bed Fusion Additive Manufacturing: Part 2 – Mechanical Model
,”
Front. Mater.
,
8
, pp.
1
14
.
35.
Riedlbauer
,
D.
,
Drexler
,
M.
,
Drummer
,
D.
,
Steinmann
,
P.
, and
Mergheim
,
J.
,
2014
, “
Modelling, Simulation and Experimental Validation of Heat Transfer in Selective Laser Melting of the Polymeric Material PA12
,”
Comput. Mater. Sci.
,
93
, pp.
239
248
.
36.
Osmanlic
,
F.
,
Wudy
,
K.
,
Laumer
,
T.
,
Schmidt
,
M.
,
Drummer
,
D.
, and
Körner
,
C.
,
2018
, “
Modeling of Laser Beam Absorption in a Polymer Powder Bed
,”
Polymers (Basel)
,
10
(
7
), pp.
1
11
.
37.
Yamauchi
,
Y.
,
Niino
,
T.
, and
Kigure
,
T.
,
2017
, “
Influence of Process Time and Geometry on Part Quality of Low Temperature Laser Sintering
,”
28thAnnual International Solid Freefrom Fabrication Symposium – An Additive Manufacturing Conference SFF 2017
,
Austin, TX
, pp.
1495
1505
.
38.
Menge
,
D.
, and
Schmid
,
H.-J.
,
2019
, “
Low Temperature Laser Sintering on a Standard System: First Attempts and Results With Pa12
,”
30th Annual International Solid Freefrom Fabrication Symposium – An Additive Manufacturing Conference SFF 2019
,
Austin, TX
, pp.
636
644
.
39.
Chatham
,
C. A.
,
Long
,
T. E.
, and
Williams
,
C. B.
,
2019
, “
Powder Bed Fusion of Poly(Phenylene Sulfide) at Bed Temperatures Significantly Below Melting
,”
Addit. Manuf.
,
28
, pp.
506
516
.
40.
Schlicht
,
S.
,
Greiner
,
S.
, and
Drummer
,
D.
,
2022
, “
Low Temperature Powder Bed Fusion of Polymers by Means of Fractal Quasi-Simultaneous Exposure Strategies
,”
Polymers (Basel)
,
14
(
7
), p.
1428
.
41.
Yamauchi
,
Y.
,
Kigure
,
T.
, and
Niino
,
T.
,
2023
, “
Penetration Depth Optimization for Proper Interlayer Adhesion Using Near-Infrared Laser in a Low-Temperature Process of PBF-LB/P
,”
J. Manuf. Process.
,
98
, pp.
126
137
.
42.
Kruth
,
J. P.
,
Levy
,
G.
,
Klocke
,
F.
, and
Childs
,
T. H. C.
,
2007
, “
Consolidation Phenomena in Laser and Powder-Bed Based Layered Manufacturing
,”
CIRP Ann.
,
56
(
2
), pp.
730
759
.
43.
Castro
,
J.
,
Nóbrega
,
J. M.
, and
Costa
,
R.
,
2024
, “
Computational Framework to Model the Selective Laser Sintering Process
,”
Materials (Basel)
,
17
(
8
), p.
1845
.
44.
Khalil
,
Y.
,
Kowalski
,
A.
, and
Hopkinson
,
N.
,
2016
, “
Influence of Energy Density on Flexural Properties of Laser-Sintered UHMWPE
,”
Addit. Manuf.
,
10
, pp.
67
75
.
45.
Strobbe
,
D.
,
Dadbakhsh
,
S.
,
Verbelen
,
L.
,
Van Puyvelde
,
P.
, and
Kruth
,
J. P.
,
2018
, “
Selective Laser Sintering of Polystyrene: A Single-Layer Approach
,”
Plast. Rubber Compos.
,
47
(
1
), pp.
2
8
.
46.
Nelson
,
J. A.
,
Galloway
,
G.
,
Rennie
,
A. E. W.
,
Abram
,
T. N.
, and
Bennett
,
G. R.
,
2014
, “
Effects of Scan Direction and Orientation on Mechanical Properties of Laser Sintered Polyamide-12
,”
Int J Adv. Des. Manuf. Technol.
,
7
(
3
), pp.
19
25
.
47.
Razaviye
,
M. K.
,
Tafti
,
R. A.
, and
Khajehmohammadi
,
M.
,
2022
, “
An Investigation on Mechanical Properties of PA12 Parts Produced by a SLS 3D Printer: An Experimental Approach
,”
CIRP J. Manuf. Sci. Technol.
,
38
, pp.
760
768
.
48.
Kummert
,
C.
, and
Schmid
,
H. J.
,
2018
, “
The Influence of Contour Scanning Parameters and Strategy on Selective Laser Sintering PA613 Build Part Properties
,”
29th Annual International Solid Freefrom Fabrication Symposium
,
Austin, TX
, pp.
1582
1591
.
You do not currently have access to this content.