Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The machining mechanics of carbon fiber reinforced polymer (CFRP) materials are influenced by the coupled effects of the workpiece anisotropy, tool edge geometry, and cutting parameters. Predicting the chip formation mechanism is crucial for optimizing cutting parameters, reducing tool wear, and improving efficiency and surface quality. This study quantitatively evaluates the effect of main CFRP failure criteria on the chip formation mechanism in modeling the machining mechanics of CFRP. The results show that the Hashin–Puck and Dávila criteria excel at capturing chip formation across all fiber orientations because of the incorporation of the “internal friction” concept, while others only achieve accurate predictions in specific fiber orientation ranges due to improper shear strength consideration. The sources of the prediction similarities, differences, and limitations of failure criteria are experimentally validated. Sensitivity analyses quantitatively determine the effect of the tool rake angle on the machining energy consumption and cutting forces across the fiber orientation range. This research can be used to select the optimal failure criteria, design proper cutting tool geometry, and inform the cutting parameter choices for CFRP machining operations.

References

1.
An
,
Q.
,
Chen
,
J.
,
Cai
,
X.
,
Peng
,
T.
, and
Chen
,
M.
,
2018
, “
Thermal Characteristics of Unidirectional Carbon Fiber Reinforced Polymer Laminates During Orthogonal Cutting
,”
J. Reinf. Plast. Compos.
,
37
(
13
), pp.
905
916
.
2.
An
,
Q.
,
Cai
,
C.
,
Cai
,
X.
, and
Chen
,
M.
,
2019
, “
Experimental Investigation on the Cutting Mechanism and Surface Generation in Orthogonal Cutting of UD-CFRP Laminates
,”
Compos. Struct.
,
230
, p.
111441
.
3.
Li
,
X.
,
Ma
,
D.
,
Liu
,
H.
,
Tan
,
W.
,
Gong
,
X.
,
Zhang
,
C.
, and
Li
,
Y.
,
2019
, “
Assessment of Failure Criteria and Damage Evolution Methods for Composite Laminates Under Low-Velocity Impact
,”
Compos. Struct.
,
207
, pp.
727
739
.
4.
Banat
,
D.
, and
Mania
,
R. J.
,
2016
, “
Comparison of Failure Criteria Application for FML Column Buckling Strength Analysis
,”
Compos. Struct.
,
140
, pp.
806
815
.
5.
Kaddour
,
A. S.
,
Hinton
,
M. J.
, and
Soden
,
P. D.
,
2004
, “
A Comparison of the Predictive Capabilities of Current Failure Theories for Composite Laminates: Additional Contributions
,”
Compos. Sci. Technol.
,
64
(
3–4
), pp.
449
476
.
6.
Sun
,
C. T.
,
Quinn
,
B. J.
, and
Oplinger
,
D. W.
,
1996
, “
Comparative Evaluation of Failure Analysis Methods for Composite Laminates
,” Report No. DOT/FAA/AR-95/109.
7.
Pinho
,
S. T.
,
Dávila
,
C. G.
,
Camanho
,
P. P.
,
Iannucci
,
L.
, and
Robinson
,
P.
,
2005
, “
Failure Models and Criteria for FRP Under In-Plane or Three-Dimensional Stress States Including Shear Non-Linearity
,” No. NASA/TM-2005–213530.
8.
Kaddour
,
A. S.
, and
Hinton
,
M.
,
2017
, “Failure Criteria for Composites,”
Reference Module in Materials Science and Materials Engineering
,
Elsevier
,
Amsterdam, Netherlands
, Volume 1, pp.
573
600
.
9.
Hoffman
,
O.
,
1967
, “
The Brittle Strength of Orthotropic Materials
,”
J. Compos. Mater.
,
1
(
2
), pp.
200
206
.
10.
Tsai
,
S. W.
,
1965
, “
Strength Characteristics of Composite Materials
,” NASA CR-224.
11.
Tsai
,
S. W.
, and
Wu
,
E. M.
,
1971
, “
A General Theory of Strength for Anisotropic Materials
,”
J. Compos. Mater.
,
5
(
1
), pp.
58
80
.
12.
Hill
,
R.
,
1948
, “
A Theory of the Yielding and Plastic Flow of Anisotropic Metals
,”
Proc. R. Soc. Lond., A
,
193
(
1033
), pp.
281
297
.
13.
Hashin
,
Z.
, and
Rotem
,
A.
,
1973
, “
A Fatigue Failure Criterion for Fiber Reinforced Materials
,”
J. Compos. Mater.
,
7
(
4
), pp.
448
464
.
14.
Hashin
,
Z.
,
1980
, “
Fatigue Failure Criteria for Unidirectional Fiber Composites
,”
ASME J. Appl. Mech.
,
47
(
4
), pp.
329
334
.
15.
Puck
,
A.
, and
Schurmann
,
H.
,
1998
, “
Failure Analysis of FRP Laminates by means of Physically Based Phenomenological Models
,”
Compos. Sci. Technol.
,
58
(
7
), pp.
1045
1067
.
16.
Dávila
,
C. G.
,
Jaunky
,
N.
, and
Goswami
,
S.
,
2003
, “
Failure Criteria for FRP Laminates in Plane Stress
,”
44th AIAA/ ASME/ ASCE/ AHS/ ASC Structures, Structural Dynamics, and Materials Conference
, AIAA Paper 2003–1991.
17.
Dávila
,
C. G.
, and
Camanho
,
P. P.
,
2003
, “
Failure Criteria for FRP Laminates in Plane Stress
,” Technical Report NASA/TM-2003-212663,
National Aeronautics and Space Administration
.
18.
Song
,
C.
, and
Jin
,
X.
,
2022
, “
Analytical Modeling of Chip Formation Mechanism in Cutting Unidirectional Carbon Fiber Reinforced Polymer
,”
Compos. Part B
,
239
, p.
109983
.
19.
Jin
,
X.
, and
Song
,
C.
,
2022
, “
Orthogonal Cutting Mechanics of Multi-directional Carbon Fiber Reinforced Polymer With Interlaminar Bonding Effect
,”
CIRP Ann.
,
71
(
1
), pp.
77
80
.
20.
Song
,
C.
, and
Jin
,
X.
,
2023
, “
Frictional Damage Mechanism for Matrix Failure in Cutting Unidirectional CFRP
,”
ASME J. Manuf. Sci. Eng.
,
145
(
6
), p.
061005
.
21.
Soden
,
P. D.
,
Hinton
,
M. J.
, and
Kaddour
,
A. S.
,
2004
, “Biaxial Test Results for Strength and Deformation of a Range of E-Glass and Carbon Fibre Reinforced Composite Laminates: Failure Exercise Benchmark Data,”
Failure Criteria in Fibre-Reinforced-Polymer Composites
,
Elsevier
, .pp.
52
96
.
22.
Rosen
,
B. W.
,
1965
, “
Mechanics of Composite Strengthening
,” Fibre Composite Materials, American Society for Metals, pp.
37
75
.
23.
Steif
,
P. S.
,
1990
, “
A Model for Kinking in Fiber Composites—I. Fiber Breakage Via Micro-Buckling
,”
Int. J. Solids Struct.
,
26
(
5–6
), pp.
549
561
.
24.
Matzenmiller
,
A. L. J. T. R.
,
Lubliner
,
J.
, and
Taylor
,
R. L.
,
1995
, “
A Constitutive Model for Anisotropic Damage in Fiber-Composites
,”
Mech. Mater.
,
20
(
2
), pp.
125
152
.
25.
Wang
,
X. M.
, and
Zhang
,
L. C.
,
2003
, “
An Experimental Investigation Into the Orthogonal Cutting of Unidirectional Fibre Reinforced Plastics
,”
Int. J. Mach. Tool. Manuf.
,
43
(
10
), pp.
1015
1022
.
26.
Voss
,
R.
,
Seeholzer
,
L.
,
Kuster
,
F.
, and
Wegener
,
K.
,
2017
, “
Influence of Fibre Orientation, Tool Geometry and Process Parameters on Surface Quality in Milling of CFRP
,”
CIRP J. Manuf. Sci. Technol.
,
18
, pp.
75
91
.
27.
Arola
,
D.
,
Ramulu
,
M.
, and
Wang
,
D. H.
,
1996
, “
Chip Formation in Orthogonal Trimming of Graphite/Epoxy Composite
,”
Compos. Part A
,
27
(
2
), pp.
121
133
.
28.
Altintas
,
Y.
, and
Ber
,
A. A.
,
2001
, “
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,”
Appl. Mech. Rev.
,
54
(
5
), pp.
B84
B84
.
You do not currently have access to this content.