Abstract

Process damping can provide improved machining productivity by increasing the stability limit at low spindle speeds. While the phenomenon is well known, experimental identification of process damping model parameters can limit pre-process parameter selection that leverages the potential increases in material removal rates. This paper proposes a physics-informed Bayesian method that can identify the cutting force and process damping model coefficients from a limited set of test cuts without requiring direct measurements of cutting force or vibration. The method uses time-domain simulation to incorporate process damping and provide a basis for test selection. New strategies for efficient sampling and dimensionality reduction are applied to lower computation time and minimize the effect of model error. The proposed method is demonstrated, and the identified cutting and damping force coefficients are compared to values obtained using machining tests and least-squares fitting.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Schmitz
,
T.
, and
Smith
,
K. S.
,
2009
,
Machining Dynamics: Frequency Response to Improved Productivity
,
Springer
,
New York
.
2.
Altintas
,
Y.
,
Eynian
,
M.
, and
Onozuka
,
H.
,
2008
, “
Identification of Dynamic Cutting Force Coefficients and Chatter Stability With Process Damping
,”
CIRP Ann.
,
57
(
1
), pp.
371
374
.
3.
Tyler
,
C.
, and
Schmitz
,
T.
,
2013
, “
Analytical Process Damping Stability Prediction
,”
J. Manuf. Processes
,
15
(
1
), pp.
69
76
.
4.
Budak
,
E.
, and
Tunç
,
L. T.
,
2010
, “
Identification and Modeling of Process Damping in Turning and Milling Using a New Approach
,”
CIRP Ann.
,
59
(
1
), pp.
403
408
.
5.
Budak
,
E.
, and
Tunc
,
L. T.
,
2009
, “
A New Method for Identification and Modeling of Process Damping in Machining
,”
ASME J. Manuf. Sci. Eng.
,
131
(
5
), p.
051019
.
6.
Sellmeier
,
V.
, and
Denkena
,
B.
,
2012
, “
High Speed Process Damping in Milling
,”
CIRP J. Manuf. Sci. Technol.
,
5
(
1
), pp.
8
19
.
7.
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2019
, “
Analytical Modeling of Process Damping in Machining
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061006
.
8.
Karandikar
,
J.
,
Traverso
,
M.
,
Abbas
,
A.
, and
Schmitz
,
T.
,
2014
, “
Bayesian Inference for Milling Stability Using a Random Walk Approach
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031015
.
9.
Karandikar
,
J.
,
Honeycutt
,
A.
,
Smith
,
S.
, and
Schmitz
,
T.
,
2020
, “
Milling Stability Identification Using Bayesian Machine Learning
,”
Procedia CIRP
,
93
, pp.
1423
1428
.
10.
Chen
,
G.
,
Li
,
Y.
,
Liu
,
X.
, and
Yang
,
B.
,
2021
, “
Physics-Informed Bayesian Inference for Milling Stability Analysis
,”
Int. J. Mach. Tools Manuf.
,
167
, p.
103767
.
11.
Li
,
K.
,
He
,
S.
,
Liu
,
H.
,
Mao
,
X.
,
Li
,
B.
, and
Luo
,
B.
,
2020
, “
Bayesian Uncertainty Quantification and Propagation for Prediction of Milling Stability Lobe
,”
Mech. Syst. Signal Process
,
138
, p.
106532
.
12.
Schmitz
,
T.
,
Cornelius
,
A.
,
Karandikar
,
J.
,
Tyler
,
C.
, and
Smith
,
S.
,
2022
, “
Receptance Coupling Substructure Analysis and Chatter Frequency-Informed Machine Learning for Milling Stability
,”
CIRP Ann.
,
71
(
1
), pp.
321
324
.
13.
Cornelius
,
A.
,
Karandikar
,
J.
,
Gomez
,
M.
, and
Schmitz
,
T.
,
2021
, “
A Bayesian Framework for Milling Stability Prediction and Reverse Parameter Identification
,”
Procedia Manuf.
,
53
, pp.
760
772
.
14.
Ahmadi
,
K.
,
2022
, “
Bayesian Updating of Modal Parameters for Modeling Chatter in Turning
,”
CIRP J. Manuf. Sci. Technol.
,
38
, pp.
724
736
.
15.
Altintaş
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.
,
44
(
1
), pp.
357
362
.
16.
Brooks
,
S.
,
Gelman
,
A.
,
Jones
,
G.
, and
Meng
,
X. L.
,
2011
,
Handbook of Markov Chain Monte Carlo
,
CRC Press
,
New York
.
17.
Calderhead
,
B.
,
2014
, “
A General Construction for Parallelizing Metropolis− Hastings Algorithms
,”
Proc. Natl. Acad. Sci.
,
111
(
49
), pp.
17408
17413
.
18.
Denkena
,
B.
,
Grabowski
,
R.
,
Krödel
,
A.
, and
Ellersiek
,
L.
,
2020
, “
Time-Domain Simulation of Milling Processes Including Process Damping
,”
CIRP J. Manuf. Sci. Technol.
,
30
, pp.
149
156
.
19.
Altıntas
,
Y.
,
Engin
,
S.
, and
Budak
,
E.
,
1999
, “
Analytical Stability Prediction and Design of Variable Pitch Cutters
,”
J. Manuf. Sci. Eng.
,
121
(
2
), pp.
173
178
.
20.
Campomanes
,
M. L.
, and
Altintas
,
Y.
,
2003
, “
An Improved Time Domain Simulation for Dynamic Milling at Small Radial Immersions
,”
ASME J. Manuf. Sci. Eng.
,
125
(
3
), pp.
416
422
.
21.
Honeycutt
,
A.
, and
Schmitz
,
T.
,
2017
, “
Milling Stability Interrogation by Subharmonic Sampling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041009
.
22.
Honeycutt
,
A.
, and
Schmitz
,
T.
,
2018
, “
Milling Bifurcations: A Review of Literature and Experiment
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
120801
.
23.
Schmitz
,
T.
,
Betters
,
E.
,
Budak
,
E.
,
Yüksel
,
E.
,
Park
,
S.
, and
Altintas
,
Y.
,
2022
, “
Review and Status of Tool Tip Frequency Response Function Prediction Using Receptance Coupling
,”
Precis. Eng..
,
79
, pp.
60
77
.
24.
Cao
,
H.
,
Li
,
B.
, and
He
,
Z.
,
2012
, “
Chatter Stability of Milling With Speed-Varying Dynamics of Spindles
,”
Int. J. Mach. Tools Manuf.
,
52
(
1
), pp.
50
58
.
25.
UTK Office of Innovative Technologies
, “ISAAC-NG,” UTK, https://oit.utk.edu/hpsc/isaac-open-enclave-new-kpb/. Accessed June 12, 2023
26.
Kim
,
H. S.
, and
Schmitz
,
T.
,
2007
, “
Bivariate Uncertainty Analysis for Impact Testing
,”
Meas. Sci. Technol.
,
18
(
11
), pp.
3565
3571
.
You do not currently have access to this content.