Abstract

The development of feasible methods for the design of power-skiving tools without cutting interference is essential in ensuring the accuracy of involute internal machined gears. One of the most crucial points in obtaining interference-free and resharpenable power-skiving tools is that of determining the cutting-edge and clearance surface. The present study introduces a tilt angle during the power-skiving process to design a simple cylindrical interference-free tool shape, in which the shape of the cutting edge remains unchanged after resharpening. The relative position between the new tool center point and gear during machining is similarly unchanged after resharpening. In addition, the clearance angle between the tool and the gear can be easily adjusted simply by changing the tilt angle of the tool during power-skiving. The validity of the proposed design method is demonstrated through a simple numerical example. The simulation results confirm the feasibility of the proposed method.

References

1.
Chen
,
X. C.
,
Li
,
J.
, and
Lou
,
B. C.
,
2013
, “
A Study on the Design of Error-Free Spur Slice Cutter
,”
Int. J. Adv. Manuf. Technol.
,
68
(
1–4
), pp.
727
738
.
2.
Guo
,
E.
,
Hong
,
R.
,
Huang
,
X.
, and
Fang
,
C.
,
2014
, “
Research on the Design of Skiving Tool for Machining Involute Gears
,”
J. Mech. Sci. Technol.
,
28
(
12
), pp.
5107
5115
.
3.
Guo
,
Z.
,
Mao
,
S. M.
,
Li
,
X. E.
, and
Rena
,
Z. Y.
,
2016
, “
Research on the Theoretical Tooth Profile Errors of Gears Machined by Skiving
,”
Mech. Mach. Theory
,
97
, pp.
1
11
.
4.
Fang
,
Z.
,
Ren
,
Z.
,
Kizaki
,
T.
, and
Sugita
,
N.
,
2016
, “
Interference-Based Technique for Designing Cutter Flank Using Multiple Radial Infeed in Gear Skiving
,”
Mech. Mach. Theory
,
169
, p.
104678
.
5.
Moriwaki
,
I.
,
Osafune
,
T.
,
Nakamura
,
M.
,
Funamoto
,
M.
,
Uriu
,
K.
,
Murakami
,
T.
,
Nagata
,
E.
,
Kurita
,
N.
,
Tachikawa
,
T.
, and
Kobayashi
,
Y.
,
2017
, “
Cutting Tool Parameters of Cylindrical Skiving Cutter With Sharpening Angle for Internal Gears
,”
ASME J. Mech. Des.
,
139
(
3
), p.
033301
.
6.
Jia
,
K.
,
Zheng
,
S.
,
Guo
,
J.
, and
Hong
,
J.
,
2019
, “
A Surface Enveloping-Assisted Approach on Cutting Edge Calculation and Machining Process Simulation for Skiving
,”
Int. J. Adv. Manuf. Technol.
,
100
(
5–8
), pp.
1635
1645
.
7.
Jia
,
K.
,
Guo
,
J.
,
Zheng
,
S.
, and
Hong
,
J.
,
2019
, “
A General Mathematical Model for Two-Parameter Generating Machining of Involute Cylindrical Gears
,”
Appl. Math. Model.
,
75
, pp.
37
51
.
8.
Wang
,
P.
,
Han
,
L.
,
Li
,
J.
, and
Liu
,
F.
,
2021
, “
Research on Design and Manufacturing of Gear Slicing Cutter for Circular Arc Tooth
,”
Int. J. Adv. Manuf. Technol.
,
113
(
7–8
), pp.
2017
2029
.
9.
Guo
,
E.
,
Shi
,
Z.
,
Hu
,
L.
,
Zhang
,
E.
, and
Ren
,
X.
,
2022
, “
Design Method of a Multi-Blade Skiving Tool for Gear Skiving
,”
Mech. Mach. Theory
,
173
, p.
104848
.
10.
Luu
,
T. T.
, and
Wu
,
Y. R.
,
2022
, “
A Novel Correction Method to Attain Even Grinding Allowance in CNC Gear Skiving Process
,”
Mech. Mach. Theory
,
171
, p.
104771
.
11.
Tsai
,
C. Y.
,
2022
, “
Simple Mathematical Approach for Analyzing Gear Tooth Profile Errors of Different Gears Cut Using Same Power-Skiving Tool
,”
Mech. Mach. Theory
,
177
, p.
105042
.
12.
Tsai
,
C. Y.
,
2021
, “
Power-Skiving Tool Design Method for Interference-Free Involute Internal Gear Cutting
,”
Mech. Mach. Theory
,
164
, p.
104396
.
13.
Chakraborty
,
J.
, and
Dhande
,
S. G.
,
1977
,
Kinematics and Geometry of Planar and Spatial Cam Mechanisms
,
John Wiley & Sons
,
New York
.
14.
Radzevich
,
S. P.
,
2017
,
Gear Cutting Tools Fundamentals of Design and Computation
, 2nd ed.,
CRC Press
,
Boca Raton, FL
, pp.
433
445
.
15.
Knight
,
W. A.
, and
Boothroyd
,
G.
,
2005
,
Fundamentals of Metal Machining and Machine Tools
, 3rd ed.,
CRC Press
,
Boca Raton, FL
, pp.
213
218
.
16.
Paul
,
R. P.
,
1982
,
Robot Manipulators-Mathematics, Programming and Control
,
MIT Press
,
Cambridge, MA
, pp.
9
15
.
You do not currently have access to this content.