Abstract

The manufacturing industry is currently facing an increasing demand for customized products, leading to a shift from mass production to mass customization. As a result, operators are required to produce multiple product variants with varying complexity levels while maintaining high-quality standards. Further, in line with the human-centered paradigm of Industry 5.0, ensuring the well-being of workers is equally important as production quality. This paper proposes a novel tool, the “Human–Robot Collaboration Quality and Well-Being Assessment Tool” (HRC-QWAT), which combines the analysis of overall defects generated during product variant manufacturing with the evaluation of human well-being in terms of stress response. The HRC-QWAT enables the evaluation and monitoring of human–robot collaboration systems during product variant production from a broader standpoint. A case study of collaborative human–robot assembly is used to demonstrate the applicability of the proposed approach. The results suggest that the HRC-QWAT can evaluate both production quality and human well-being, providing a useful tool for companies to monitor and improve their manufacturing processes. Overall, this paper contributes to developing a human-centric approach to quality monitoring in the context of human–robot collaborative manufacturing.

References

1.
Falck
,
A.-C.
,
Örtengren
,
R.
,
Rosenqvist
,
M.
, and
Söderberg
,
R.
,
2017
, “
Basic Complexity Criteria and Their Impact on Manual Assembly Quality in Actual Production
,”
Int. J. Ind. Ergon.
,
58
, pp.
117
128
.
2.
Buckholtz
,
B.
,
Ragai
,
I.
, and
Wang
,
L.
,
2015
, “
Cloud Manufacturing: Current Trends and Future Implementations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
040902
.
3.
Krüger
,
J.
,
Lien
,
T. K.
, and
Verl
,
A.
,
2009
, “
Cooperation of Human and Machines in Assembly Lines
,”
CIRP Ann.
,
58
(
2
), pp.
628
646
.
4.
Peshkin
,
M.
, and
Colgate
,
J. E.
,
1999
, “
Cobots
,”
Ind. Robot An Int. J.
,
26
(
5
), pp.
335
341
.
5.
Maddikunta
,
P. K. R.
,
Pham
,
Q.-V.
,
Prabadevi
,
B.
,
Deepa
,
N.
,
Dev
,
K.
,
Gadekallu
,
T. R.
,
Ruby
,
R.
, and
Liyanage
,
M.
,
2021
, “
Industry 5.0: A Survey on Enabling Technologies and Potential Applications
,”
J. Ind. Inf. Integr.
,
26
, p.
100257
.
6.
Coronado
,
E.
,
Kiyokawa
,
T.
,
Ricardez
,
G. A. G.
,
Ramirez-Alpizar
,
I. G.
,
Venture
,
G.
, and
Yamanobe
,
N.
,
2022
, “
Evaluating Quality in Human-Robot Interaction: A Systematic Search and Classification of Performance and Human-Centered Factors, Measures and Metrics Towards an Industry 5.0
,”
J. Manuf. Syst.
,
63
, pp.
392
410
.
7.
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Diaz-Elsayed
,
N.
, and
Haapala
,
K. R.
,
2023
, “
The Role of Industry 4.0 Technologies in Manufacturing Sustainability Assessment
,”
ASME J. Manuf. Sci. Eng.
,
145
(
1
), p.
010801
.
8.
Deissenboeck
,
F.
,
Juergens
,
E.
,
Lochmann
,
K.
, and
Wagner
,
S.
,
2009
, “
Software Quality Models: Purposes, Usage Scenarios and Requirements
,”
Proceedings of the 2009 ICSE Workshop on Software Quality
,
Vancouver, BC
,
May 16
, IEEE, pp.
9
14
.
9.
Damacharla
,
P.
,
Javaid
,
A. Y.
,
Gallimore
,
J. J.
, and
Devabhaktuni
,
V. K.
,
2018
, “
Common Metrics to Benchmark Human-Machine Teams (HMT): A Review
,”
IEEE Access
,
6
, pp.
38637
38655
.
10.
Breque
,
M.
,
De Nul
,
L.
, and
Petridis
,
A.
,
2021
, “
Industry 5.0: Towards a Sustainable, Human-Centric and Resilient European Industry
,”
Publications Office of the European Union
, European Commission, Directorate-General for Research and Innovation. https://data.europa.eu/doi/10.2777/308407
11.
Leng
,
J.
,
Sha
,
W.
,
Wang
,
B.
,
Zheng
,
P.
,
Zhuang
,
C.
,
Liu
,
Q.
,
Wuest
,
T.
,
Mourtzis
,
D.
, and
Wang
,
L.
,
2022
, “
Industry 5.0: Prospect and Retrospect
,”
J. Manuf. Syst.
,
65
, pp.
279
295
.
12.
Xu
,
X.
,
Lu
,
Y.
,
Vogel-Heuser
,
B.
, and
Wang
,
L.
,
2021
, “
Industry 4.0 and Industry 5.0—Inception, Conception and Perception
,”
J. Manuf. Syst.
,
61
, pp.
530
535
.
13.
Marvel
,
J. A.
,
Bagchi
,
S.
,
Zimmerman
,
M.
, and
Antonishek
,
B.
,
2020
, “
Towards Effective Interface Designs for Collaborative HRI in Manufacturing: Metrics and Measures
,”
ACM Trans. Hum.-Robot Interact.
,
9
(
4
), pp.
1
55
.
14.
Khavas
,
Z. R.
,
Ahmadzadeh
,
S. R.
, and
Robinette
,
P.
,
2020
, “
Modeling Trust in Human-Robot Interaction: A Survey
,”
Proceedings of the Social Robotics: 12th International Conference, ICSR 2020
,
Golden, CO
,
Nov. 14–18
,
Springer
, pp.
529
541
.
15.
Venkatesh
,
V.
, and
Davis
,
F. D.
,
2000
, “
A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies
,”
Manage. Sci.
,
46
(
2
), pp.
186
204
.
16.
Young
,
M. S.
,
Brookhuis
,
K. A.
,
Wickens
,
C. D.
, and
Hancock
,
P. A.
,
2015
, “
State of Science: Mental Workload in Ergonomics
,”
Ergonomics
,
58
(
1
), pp.
1
17
.
17.
Heard
,
J.
,
Harriott
,
C. E.
, and
Adams
,
J. A.
,
2018
, “
A Survey of Workload Assessment Algorithms
,”
IEEE Trans. Hum.-Mach. Syst.
,
48
(
5
), pp.
434
451
.
18.
Tabrez
,
A.
,
Luebbers
,
M. B.
, and
Hayes
,
B.
,
2020
, “
A Survey of Mental Modeling Techniques in Human–Robot Teaming
,”
Curr. Robot. Rep.
,
1
(
4
), pp.
259
267
.
19.
Mathieu
,
J. E.
,
Heffner
,
T. S.
,
Goodwin
,
G. F.
,
Salas
,
E.
, and
Cannon-Bowers
,
J. A.
,
2000
, “
The Influence of Shared Mental Models on Team Process and Performance
,”
J. Appl. Psychol.
,
85
(
2
), p.
273
283
.
20.
Hudlicka
,
E.
,
2003
, “
To Feel or Not to Feel: The Role of Affect in Human–Computer Interaction
,”
Int. J. Hum. Comput. Stud.
,
59
(
1–2
), pp.
1
32
.
21.
Zhang
,
P.
,
2013
, “
The Affective Response Model: A Theoretical Framework of Affective Concepts and Their Relationships in the ICT Context
,”
MIS Q.
,
37
(
1
), pp.
247
274
.
22.
Naneva
,
S.
,
Sarda Gou
,
M.
,
Webb
,
T. L.
, and
Prescott
,
T. J.
,
2020
, “
A Systematic Review of Attitudes, Anxiety, Acceptance, and Trust Towards Social Robots
,”
Int. J. Soc. Robot.
,
12
(
6
), pp.
1179
1201
.
23.
Lorenzini
,
M.
,
Kim
,
W.
, and
Ajoudani
,
A.
,
2022
, “
An Online Multi-Index Approach to Human Ergonomics Assessment in the Workplace
,”
IEEE Trans. Hum.-Mach. Syst.
,
52
(
5
), pp.
812
823
.
24.
Ajoudani
,
A.
,
Albrecht
,
P.
,
Bianchi
,
M.
,
Cherubini
,
A.
,
Del Ferraro
,
S.
,
Fraisse
,
P.
,
Fritzsche
,
L.
,
Garabini
,
M.
,
Ranavolo
,
A.
, and
Rosen
,
P. H.
,
2020
, “
Smart Collaborative Systems for Enabling Flexible and Ergonomic Work Practices [Industry Activities]
,”
IEEE Robot. Autom. Mag.
,
27
(
2
), pp.
169
176
.
25.
Fan
,
J.
,
Zheng
,
P.
, and
Lee
,
C. K. M.
,
2023
, “
A Vision-Based Human Digital Twin Modelling Approach for Adaptive Human-Robot Collaboration
,”
ASME J. Manuf. Sci. Eng.
,
145
(
12
), p.
121002
.
26.
Verna
,
E.
,
Puttero
,
S.
,
Genta
,
G.
, and
Galetto
,
M.
,
2023
, “
Toward a Concept of Digital Twin for Monitoring Assembly and Disassembly Processes
,”
Qual. Eng.
.
27.
Irfan
,
B.
,
Ramachandran
,
A.
,
Spaulding
,
S.
,
Glas
,
D. F.
,
Leite
,
I.
, and
Koay
,
K. L.
,
2019
, “
Personalization in Long-Term Human-Robot Interaction
,”
Proceedings of the 2019 14th ACM/IEEE International Conference on Human–Robot Interaction (HRI)
,
Daegu, South Korea
,
Mar. 11–14
, IEEE, pp.
685
686
.
28.
Müller
,
J.
,
2020
, “
Enabling Technologies for Industry 5.0—Results of a Workshop with Europe’s Technology Leaders
,”
Publications Office, European Commission
, Directorate-General for Research and Innovation. https://data.europa.eu/doi/10.2777/082634
29.
Hu
,
Y.
,
Abe
,
N.
,
Benallegue
,
M.
,
Yamanobe
,
N.
,
Venture
,
G.
, and
Yoshida
,
E.
,
2022
, “
Toward Active Physical Human–Robot Interaction: Quantifying the Human State During Interactions
,”
IEEE Trans. Hum.-Mach. Syst.
,
52
(
3
), pp.
367
378
.
30.
Setchi
,
R.
,
Dehkordi
,
M. B.
, and
Khan
,
J. S.
,
2020
, “
Explainable Robotics in Human-Robot Interactions
,”
Procedia Comput. Sci.
,
176
, pp.
3057
3066
.
31.
Anjomshoae
,
S.
,
Najjar
,
A.
,
Calvaresi
,
D.
, and
Främling
,
K.
,
2019
, “
Explainable Agents and Robots: Results From a Systematic Literature Review
,”
Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019)
,
Montreal, Canada
,
May 13–17, 2019
,
International Foundation for Autonomous Agents and Multiagent Systems
, pp.
1078
1088
.
32.
Hoffman
,
G.
,
2019
, “
Evaluating Fluency in Human–Robot Collaboration
,”
IEEE Trans. Hum.-Mach. Syst.
,
49
(
3
), pp.
209
218
.
33.
Heard
,
J.
,
Harriott
,
C. E.
, and
Adams
,
J. A.
,
2017
, “
A Human Workload Assessment Algorithm for Collaborative Human-Machine Teams
,”
Proceedings of the 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)
,
Lisbon, Portugal
,
Aug. 28–Sept. 1
, IEEE, pp.
366
371
.
34.
Heard
,
J.
,
Heald
,
R.
,
Harriott
,
C. E.
, and
Adams
,
J. A.
,
2019
, “
A Diagnostic Human Workload Assessment Algorithm for Collaborative and Supervisory Human–Robot Teams
,”
ACM Trans. Hum.-Robot Interact.
,
8
(
2
), pp.
1
30
.
35.
Petersen
,
S. A.
,
Mannhardt
,
F.
,
Oliveira
,
M.
, and
Torvatn
,
H.
,
2018
, “
A Framework to Navigate the Privacy Trade-Offs for Human-Centred Manufacturing
,”
Collaborative Networks of Cognitive Systems: 19th IFIP WG 5.5 Working Conference on Virtual Enterprises, PRO-VE 2018
,
Cardiff, UK
,
Sept 17–19, 2018
,
Springer
, pp.
85
97
.
36.
Mannhardt
,
F.
,
Petersen
,
S. A.
, and
Oliveira
,
M. F.
,
2019
, “
A Trust and Privacy Framework for Smart Manufacturing Environments
,”
J. Ambient Intell. Smart Environ.
,
11
(
3
), pp.
201
219
.
37.
Rahman
,
S. M. M.
,
2021
, “
Cybersecurity Metrics for Human-Robot Collaborative Automotive Manufacturing
,”
2021 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)
,
Virtual Conference
,
July 1–2
, IEEE, pp.
254
259
.
38.
Causo
,
A.
,
Durham
,
J.
,
Hauser
,
K.
,
Okada
,
K.
, and
Rodriguez
,
A.
,
2020
,
Advances on Robotic Item Picking
,
Springer
,
New York
.
39.
Fujita
,
M.
,
Domae
,
Y.
,
Noda
,
A.
,
Garcia Ricardez
,
G. A.
,
Nagatani
,
T.
,
Zeng
,
A.
,
Song
,
S.
,
Rodriguez
A.
,
Causo
A.
,
Chen
I. M.
, and
Ogasawara
T.
,
2019
, “
What Are the Important Technologies for Bin Picking? Technology Analysis of Robots in Competitions Based on a Set of Performance Metrics
,”
Adv. Robot.
,
34
(
7–8
), pp.
560
574
.
40.
Zadeh
,
L.
,
1962
, “
From Circuit Theory to System Theory
,”
Proc. IRE
,
50
(
5
), pp.
856
865
.
41.
ElMaraghy
,
H.
,
Schuh
,
G.
,
ElMaraghy
,
W.
,
Piller
,
F.
,
Schönsleben
,
P.
,
Tseng
,
M.
, and
Bernard
,
A.
,
2013
, “
Product Variety Management
,”
CIRP Ann.
,
62
(
2
), pp.
629
652
.
42.
Genta
,
G.
,
Galetto
,
M.
, and
Franceschini
,
F.
,
2018
, “
Product Complexity and Design of Inspection Strategies for Assembly Manufacturing Processes
,”
Int. J. Prod. Res.
,
56
(
11
), pp.
4056
4066
.
43.
Verna
,
E.
,
Genta
,
G.
,
Galetto
,
M.
, and
Franceschini
,
F.
,
2022
, “
Defect Prediction for Assembled Products: A Novel Model Based on the Structural Complexity Paradigm
,”
Int. J. Adv. Manuf. Technol.
,
120
(
5–6
), pp.
3405
3426
.
44.
Sinha
,
K.
,
2014
, “
Structural Complexity and Its Implications for Design of Cyber-Physical Systems
,”
PhD dissertation
,
Engineering Systems Division, Massachusetts Institute of Technology
,
Cambridge, MA
.
45.
Alkan
,
B.
, and
Harrison
,
R.
,
2019
, “
A Virtual Engineering Based Approach to Verify Structural Complexity of Component-Based Automation Systems in Early Design Phase
,”
J. Manuf. Syst.
,
53
, pp.
18
31
.
46.
Verna
,
E.
,
Genta
,
G.
,
Galetto
,
M.
, and
Franceschini
,
F.
,
2022
, “
Defects-Per-Unit Control Chart for Assembled Products Based on Defect Prediction Models
,”
Int. J. Adv. Manuf. Technol.
,
119
(
5–6
), pp.
2835
2846
.
47.
Hückel
,
E.
,
1932
, “
Quantentheoretische Beiträge Zum Problem Der Aromatischen Und Ungesättigten Verbindungen. III
,”
Zeitschrift für Phys.
,
76
(
9–10
), pp.
628
648
.
48.
Chan
,
V.
, and
Salustri
,
F. A.
,
2003
,
Dfa: The Lucas Method
,
Ryerson University
,
Toronto
.
49.
Barbato
,
G.
,
Barini
,
E. M.
,
Genta
,
G.
, and
Levi
,
R.
,
2011
, “
Features and Performance of Some Outlier Detection Methods
,”
J. Appl. Stat.
,
38
(
10
), pp.
2133
2149
.
50.
Cameron
,
A. C.
, and
Trivedi
,
P. K.
,
2013
,
Regression Analysis of Count Data
,
Cambridge University Press
,
Cambridge, UK
.
51.
Myers
,
R. H.
,
Montgomery
,
D. C.
,
Vining
,
G. G.
, and
Robinson
,
T. J.
,
2012
,
Generalized Linear Models: With Applications in Engineering and the Sciences
,
John Wiley & Sons
,
Hoboken, NJ
.
52.
Gervasi
,
R.
,
Aliev
,
K.
,
Mastrogiacomo
,
L.
, and
Franceschini
,
F.
,
2022
, “
User Experience and Physiological Response in Human-Robot Collaboration: A Preliminary Investigation
,”
J. Intell. Robot. Syst.
,
106
(
2
), p.
36
.
53.
Zhao
,
B.
,
Wang
,
Z.
,
Yu
,
Z.
, and
Guo
,
B.
,
2018
, “
EmotionSense: Emotion Recognition Based on Wearable Wristband
,”
Proceedings of the 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI)
,
Guangzhou, China
,
Oct. 8–12
, pp.
346
355
.
54.
Taylor
,
S.
,
Jaques
,
N.
,
Chen
,
W.
,
Fedor
,
S.
,
Sano
,
A.
, and
Picard
,
R.
,
2015
, “
Automatic Identification of Artifacts in Electrodermal Activity Data
,”
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
,
Milan, Italy
,
Aug. 25–29
, pp.
1934
1937
.
55.
Montgomery
,
D.
,
Runger
,
G.
, and
Hubele
,
N.
,
2010
,
Engineering Statistics
,
John Wiley & Sons Inc
,
New York
.
56.
Seber
,
G. A. F.
, and
Wild
,
C. J.
,
1989
,
Nonlinear Regression
,
John Wiley & Sons
,
New York
.
57.
Bates
,
D. M.
, and
Watts
,
D. G.
,
1988
,
Nonlinear Regression Analysis and Its Applications
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
58.
Galetto
,
M.
,
Verna
,
E.
, and
Genta
,
G.
,
2020
, “
Accurate Estimation of Prediction Models for Operator-Induced Defects in Assembly Manufacturing Processes
,”
Qual. Eng.
,
32
(
4
), pp.
595
613
.
59.
Hasan
,
S. M.
,
Baqai
,
A. A.
,
Butt
,
S. U.
, and
quz Zaman
,
U. K.
,
2018
, “
Product Family Formation Based on Complexity for Assembly Systems
,”
Int. J. Adv. Manuf. Technol.
,
95
(
1
), pp.
569
585
.
60.
Lim
,
K. Y. H.
,
Zheng
,
P.
,
Chen
,
C. H.
, and
Huang
,
L.
,
2020
, “
A Digital Twin-Enhanced System for Engineering Product Family Design and Optimization
,”
J. Manuf. Syst.
,
57
, pp.
82
93
.
61.
Dan
,
B.
, and
Tseng
,
M. M.
,
2007
, “
Assessing the Inherent Flexibility of Product Families for Meeting Customisation Requirements
,”
Int. J. Manuf. Technol. Manag.
,
10
(
2–3
), pp.
227
246
.
62.
Montgomery
,
D. C.
,
2019
,
Introduction to Statistical Quality Control
,
Wiley Global Education
,
Hoboken, NJ
.
63.
Barbato
,
G.
,
Germak
,
A.
, and
Genta
,
G.
,
2013
,
Measurements for Decision Making
,
Società Editrice Esculapio
,
Bologna
.
You do not currently have access to this content.