Abstract

In the manufacturing industry, titanium alloys machining has always been a challenge, mostly because of tool premature wear. Consequently, the understanding of physical phenomena and their modeling have become critical research topics for productivity improvement. The majority of tool wear model is based on cutting condition variations. However, several tool paths with the same cutting conditions lead to different tool lives. The impact of the cutting strategy is significant on tool wear and complex to anticipate. In this article, a global method allowing to estimate the impact of a cutting strategy on tool life is presented. It is based on tool path features extracted from workshop cutting power signals collection. First, optimal cutting conditions are determined according to AFNOR standard by minimizing specific cutting coefficient. Then, correlation analysis is carried out for different configurations of the database. Special iconography of correlations is used to explain links between the features. To finish, from the correlations between impact of the tool path on tool life and the features, a multiple regression model based on the method of least squares is computed to estimate the impact of the tool path on tool life. Physical correlations have been highlighted and confirmed the significant role of the cutting strategy on tool life. Models are quite accurate despite the low amount of data and the method is promising for an industrial implementation.

References

1.
Barelli
,
F.
,
Dessein
,
G.
,
Darnis
,
P.
,
Laheurte
,
R.
,
Cahuc
,
O.
,
Mousseigne
,
M.
, and
Rubio
,
W.
,
2013
, “
Machinability of Titanium Alloys (TA6V αβ, β) and Workpiece Deformation
.”
2.
Ezugwu
,
E. O.
,
Da Silva
,
R. B.
,
Bonney
,
J.
, and
Machado
,
A. R.
,
2005
, “
Evaluation of the Performance of CBN Tools When Turning Ti–6Al–4V Alloy With High Pressure Coolant Supplies
,”
Int. J. Mach. Tools. Manuf.
,
45
(
9
), pp.
1009
1014
.
3.
Peters
,
M.
,
Kumpfert
,
J.
,
Ward
,
C. H.
, and
Leyens
,
C.
,
2003
, “
Titanium Alloys for Aerospace Applications
,”
Adv. Eng. Mater.
,
5
(
6
), pp.
419
427
.
4.
AFNOR
,
1994
,
Working Zone of Cutting Tools: Couple Tool-Material—Part 1 to 8, NF E66-520
.
5.
Wagner
,
V.
,
Balcaen
,
Y.
,
Garnier
,
C.
,
Dessein
,
G.
, and
Alexi
,
J.
,
2014
, “
Etude De La Formation Des Copeaux En Tournage à Sec Du Ti5553
,”
Conference MUGV
,
Aubieres, France
,
Oct. 15–16
.
6.
Taylor
,
F. W.
,
1907
,
On the Art of Cutting Metals
, Vol.
28
.
ASME
, pp.
121
163
.
7.
Wu
,
H. B.
, and
Zhang
,
S. J.
,
2014
, “
3D FEM Simulation of Milling Process for Titanium Alloy Ti6Al4V
,”
Int. J. Adv. Manuf. Technol.
,
71
, pp.
1319
1326
.
8.
Jemielniak
,
K.
, and
Otman
,
O.
,
1998
, “
Tool Failure Detection Based on Analysis of Acoustic Emission Signals
,”
J. Mater. Process. Technol.
,
76
(
1–3
), pp.
192
197
.
9.
Choi
,
D.
,
Kwon
,
W. T.
, and
Chu
,
C. N.
,
1999
, “
Real-Time Monitoring of Tool Fracture in Turning Using Sensor Fusion
,”
Int. J. Adv. Manuf. Technol.
,
15
(
5
), pp.
305
310
.
10.
Diei
,
E. N.
, and
Dornfeld
,
D. A.
,
1987
, “
Acoustic Emission Sensing of Tool Wear in Face Milling
,”
J. Eng. Ind.
,
109
(
3
), pp.
234
240
.
11.
Marinescu
,
I.
, and
Axinte
,
D. A.
,
2008
, “
A Critical Analysis of Effectiveness of Acoustic Emission Signals to Detect Tool and Workpiece Malfunctions in Milling Operations
,”
Int. J. Mach. Tools. Manuf.
,
48
(
10
), pp.
1148
1160
.
12.
Orhan
,
S.
,
Er
,
A. O.
,
Camuşcu
,
Necip N.
, and
Aslan
,
Ersan
,
2007
, “
Tool Wear Evaluation by Vibration Analysis During End Milling of AISI D3 Cold Work Tool Steel With 35 HRC Hardness
,”
NDT & E Int.
,
40
(
2
), pp.
121
126
.
13.
Dimla
,
D. E.
, and
Lister
,
P. M.
,
2000
, “
On-Line Metal Cutting Tool Condition Monitoring.: I: Force and Vibration Analyses
,”
Int. J. Mach. Tools. Manuf.
,
40
(
5
), pp.
739
768
.
14.
Ghasempoor
,
A.
,
Jeswiet
,
J.
, and
Moore
,
T. N.
,
1999
, “
Real Time Implementation of On-line Tool Condition Monitoring in Turning
,”
Int. J. Mach. Tools. Manuf.
,
39
(
12
), pp.
1883
1902
.
15.
Bhattacharyya
,
P.
,
Sengupta
,
D.
, and
Mukhopadhyay
,
S.
,
2007
, “
Cutting Force-Based Real-Time Estimation of Tool Wear in Face Milling Using a Combination of Signal Processing Techniques
,”
Mech. Syst. Signal. Process.
,
21
(
6
), pp.
2665
2683
.
16.
Bhattacharyya
,
P.
,
Sengupta
,
D.
,
Mukhopadhyay
,
S.
, and
Chattopadhyay
,
A. B.
,
2008
, “
On-Line Tool Condition Monitoring in Face Milling Using Current and Power Signals
,”
Int. J. Prod. Res.
,
46
(
4
), pp.
1187
1201
.
17.
Ghosh
,
N.
,
Ravi
,
Y. B.
,
Patra
,
A.
,
Mukhopadhyay
,
S.
,
Paul
,
S.
,
Mohanty
,
A. R.
, and
Chattopadhyay
,
A. B.
,
2007
, “
Estimation of Tool Wear During CNC Milling Using Neural Network-Based Sensor Fusion
,”
Mech. Syst. Signal. Process.
,
21
(
1
), pp.
466
479
.
18.
Drouillet
,
C
,
Karandikar
,
J
,
Nath
,
C
,
Journeaux
,
A.-C.
,
Mansori
,
M. E.l
, and
Kurfess
,
T
,
2016
, “
Tool Life Predictions in Milling Using Spindle Power With the Neural Network Technique
,”
J. Manuf. Process.
,
22
(
Supplement C
), pp.
161
168
.
19.
Teti
,
R.
,
Jemielniak
,
K.
,
O’Donnell
,
G.
, and
Dornfeld
,
D.
,
2010
, “
Advanced Monitoring of Machining Operations
,”
CIRP Annals - Manuf. Technol.
,
59
(
2
), pp.
717
739
.
20.
Sick
,
B.
,
2002
, “
On-line and Indirect Tool Wear Monitoring in Turning With Artificial Neural Networks: A Review of More Than a Decade of Research
,”
Mech. Syst. Signal. Process.
,
16
(
4
), pp.
487
546
.
21.
Prickett
,
P. W.
, and
Johns
,
C.
,
1999
, “
An Overview of Approaches to End Milling Tool Monitoring
,”
Int. J. Mach. Tools. Manuf.
,
39
(
1
), pp.
105
122
.
22.
Choudhary
,
A. K.
,
Harding
,
J. A.
, and
Tiwari
,
M. K.
,
2009
, “
Data Mining in Manufacturing: A Review Based on the Kind of Knowledge
,”
J. Intell. Manuf.
,
20
(
5
), pp.
501
521
.
23.
Ambhore
,
N.
,
Kamble
,
D.
,
Chinchanikar
,
S.
, and
Wayal
,
V.
,
2015
, “
Tool Condition Monitoring System: A Review
,”
Mater. Today: Proc.
,
2
(
4
), pp.
3419
3428
.
24.
Tian
,
Y. B.
,
Liu
,
F.
,
Wang
,
Y.
, and
Wu
,
H.
,
2017
, “
Development of Portable Power Monitoring System and Grinding Analytical Tool
,”
J. Manuf. Proc.
,
27
(
Supplement C
), pp.
188
197
.
25.
Toh
,
C. K.
,
2003
, “
Tool Life and Tool Wear During High-Speed Rough Milling Using Alternative Cutter Path Strategies
,”
Proc. Inst. Mech. Eng. B.
,
217
(
9
), pp.
1295
1304
.
26.
Axinte
,
D.
, and
Gindy
,
N.
,
2004
, “
Assessment of the Effectiveness of a Spindle Power Signal for Tool Condition Monitoring in Machining Processes
,”
Int. J. Prod. Res.
,
42
(
13
), pp.
2679
2691
.
27.
Deshayes
,
L.
,
2007
, “
Analysis of an Equivalent Tool Face for the Cutting Speed Range Prediction of Complex Grooved Tools
,”
J. Mater. Process. Technol.
,
190
(
1–3
), pp.
251
262
.
28.
Wagner
,
V
,
2011
,
Improving Productivity in Machining of Refractory Titanium : The Ti5553, PhD Thesis, Tarbes, France
.
29.
Wagner
,
V.
,
Barelli
,
F.
,
Dessein
,
G.
,
Laheurte
,
R.
,
Darnis
,
P.
,
Cahuc
,
O.
, and
Mousseigne
,
M.
,
2017
, “
Comparison of the Chip Formations During Turning of Ti64 β and Ti64 α + β
,”
Proc. Inst. Mech. Eng. B.
,
233
(
2
), pp.
494
504
.
30.
Barelli
,
F.
,
Wagner
,
V.
,
Laheurte
,
R.
,
Dessein
,
G.
,
Darnis
,
P.
,
Cahuc
,
O.
, and
Mousseigne
,
M.
,
2017
, “
Orthogonal Cutting of TA6V Alloys With Chamfered Tools: Analysis of Tool-Chip Contact Lengths
,”
Proc. Inst. Mech. Eng. B.
,
231
(
13
), pp.
2384
2395
.
31.
Lagarde
,
Q.
,
Wagner
,
V.
,
Dessein
,
G.
,
Couderc
,
P.
, and
Garnier
,
C.
,
2016
, “
Study of Radial Depth of Cut Influence on Tool Temperature and Wear by Infrared Radiations Camera Measurements in Intermittent Cutting of Ti-6Al-4V Titanium Alloy
,”
HSM 2016, XIII International Conference on High Speed Machining
,
Metz, France
,
Oct. 4–5
.
32.
Lesty
,
M
, and
Buat-Ménard
,
P
,
1982
, “
La Synthese Géométrique Des Corrélations Multidimensionnelles
,”
Cahiers de l’analyse des données
,
7
(
3
), pp.
355
370
.
You do not currently have access to this content.